Cargando…

Effect of Mg on the Formation of Periodic Layered Structure during Double Batch Hot Dip Process in Zn-Al Bath

The article presents the results of studies on the influence of Mg on the formation of the periodic layered structure of the Zn-AlMg coatings. These coatings were produced by the double batch hot dip method in a Zn bath and then in a Zn-Al(Mg) bath with a content of 15, 23, 31 wt.% Al and 3, 6 wt.%...

Descripción completa

Detalles Bibliográficos
Autores principales: Saternus, Mariola, Kania, Henryk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961903/
https://www.ncbi.nlm.nih.gov/pubmed/33800931
http://dx.doi.org/10.3390/ma14051259
Descripción
Sumario:The article presents the results of studies on the influence of Mg on the formation of the periodic layered structure of the Zn-AlMg coatings. These coatings were produced by the double batch hot dip method in a Zn bath and then in a Zn-Al(Mg) bath with a content of 15, 23, 31 wt.% Al and 3, 6 wt.% Mg. The microstructure of the coatings (OM, SEM) was revealed and the phase composition (XRD) obtained in two-component Zn-Al baths and Zn-AlMg baths were determined. The periodic layered structure was found to consist of alternating FeAl(3) phase layers and a bath alloy (Zn + Al + Mg). Moreover, it was observed that the addition of 3 wt.% Mg reduces the thickness of the coating in baths containing 23 and 31 wt.% Al. However, the addition of 6 wt.% Mg causes complete disappearance of periodic layered structure in a bath with 23 wt.% Al. In a bath with a content of 31 wt.% Al the addition of 6 wt.% Mg creates a compact layer consisting of the FeAl(3) phase containing the precipitation of the MgZn(2) phase and Fe(2)Al(5) phase. Such a structure of the coating transition layer limits the growth of the periodic layered structure in the coating.