Cargando…

Lightweight Image Restoration Network for Strong Noise Removal in Nuclear Radiation Scenes

In order to remove the strong noise with complex shapes and high density in nuclear radiation scenes, a lightweight network composed of a Noise Learning Unit (NLU) and Texture Learning Unit (TLU) was designed. The NLU is bilinearly composed of a Multi-scale Kernel Module (MKM) and a Residual Module...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Xin, Luo, Hongwei, Liu, Guihua, Chen, Chunmei, Xu, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961967/
https://www.ncbi.nlm.nih.gov/pubmed/33807719
http://dx.doi.org/10.3390/s21051810
Descripción
Sumario:In order to remove the strong noise with complex shapes and high density in nuclear radiation scenes, a lightweight network composed of a Noise Learning Unit (NLU) and Texture Learning Unit (TLU) was designed. The NLU is bilinearly composed of a Multi-scale Kernel Module (MKM) and a Residual Module (RM), which learn non-local information and high-level features, respectively. Both the MKM and RM have receptive field blocks and attention blocks to enlarge receptive fields and enhance features. The TLU is at the bottom of the NLU and learns textures through an independent loss. The entire network adopts a Mish activation function and asymmetric convolutions to improve the overall performance. Compared with 12 denoising methods on our nuclear radiation dataset, the proposed method has the fewest model parameters, the highest quantitative metrics, and the best perceptual satisfaction, indicating its high denoising efficiency and rich texture retention.