Cargando…
Lightweight Image Restoration Network for Strong Noise Removal in Nuclear Radiation Scenes
In order to remove the strong noise with complex shapes and high density in nuclear radiation scenes, a lightweight network composed of a Noise Learning Unit (NLU) and Texture Learning Unit (TLU) was designed. The NLU is bilinearly composed of a Multi-scale Kernel Module (MKM) and a Residual Module...
Autores principales: | Sun, Xin, Luo, Hongwei, Liu, Guihua, Chen, Chunmei, Xu, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7961967/ https://www.ncbi.nlm.nih.gov/pubmed/33807719 http://dx.doi.org/10.3390/s21051810 |
Ejemplares similares
-
An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification
por: Yu, Donghang, et al.
Publicado: (2020) -
Lightweight Scene Text Recognition Based on Transformer
por: Luan, Xin, et al.
Publicado: (2023) -
Lightweight and Efficient Image Dehazing Network Guided by Transmission Estimation from Real-World Hazy Scenes
por: Li, Zhan, et al.
Publicado: (2021) -
Lightweight convolutional neural network for aircraft small target real-time detection in Airport videos in complex scenes
por: Li, Weidong, et al.
Publicado: (2022) -
Lightweight dense video captioning with cross-modal attention and knowledge-enhanced unbiased scene graph
por: Han, Shixing, et al.
Publicado: (2023)