Cargando…
Detection and Classification of Stroke Gaits by Deep Neural Networks Employing Inertial Measurement Units
This paper develops Deep Neural Network (DNN) models that can recognize stroke gaits. Stroke patients usually suffer from partial disability and develop abnormal gaits that can vary widely and need targeted treatments. Evaluation of gait patterns is crucial for clinical experts to make decisions abo...
Autores principales: | Wang, Fu-Cheng, Chen, Szu-Fu, Lin, Chin-Hsien, Shih, Chih-Jen, Lin, Ang-Chieh, Yuan, Wei, Li, You-Chi, Kuo, Tien-Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962128/ https://www.ncbi.nlm.nih.gov/pubmed/33800061 http://dx.doi.org/10.3390/s21051864 |
Ejemplares similares
-
Superior Gait Symmetry and Postural Stability among Yoga Instructors—Inertial Measurement Unit-Based Evaluation
por: Lin, Ang-Chieh, et al.
Publicado: (2022) -
Performance Evaluation for Clinical Stroke Rehabilitation via an Automatic Mobile Gait Trainer
por: Shih, Chih-Jen, et al.
Publicado: (2023) -
Superior gait performance and balance ability in Latin dancers
por: Liu, Yen-Ting, et al.
Publicado: (2022) -
Recurrent Neural Network Methods for Extracting Dynamic Balance Variables during Gait from a Single Inertial Measurement Unit
por: Yu, Cheng-Hao, et al.
Publicado: (2023) -
Recurrent Neural Network for Inertial Gait User Recognition in Smartphones
por: Fernandez-Lopez, Pablo, et al.
Publicado: (2019)