Cargando…

New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic–pituitary–adrenal (HPA) axis (CRH-R1/2, IP(3)-R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75(NTR) and TrkA) in ex vivo human male androgenetic scalp hair follicles

BACKGROUND: Human hair is highly responsive to stress, and human scalp hair follicles (HFs) contain a peripheral neuroendocrine equivalent of the systemic hypothalamic–pituitary–adrenal (HPA) stress axis. Androgenetic alopecia (AGA) is supposed to be aggravated by stress. We used corticotropin-relea...

Descripción completa

Detalles Bibliográficos
Autores principales: Fischer, T.W., Bergmann, A., Kruse, N., Kleszczynski, K., Skobowiat, C., Slominski, A.T., Paus, R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962141/
https://www.ncbi.nlm.nih.gov/pubmed/32271938
http://dx.doi.org/10.1111/bjd.19115
_version_ 1783665413431754752
author Fischer, T.W.
Bergmann, A.
Kruse, N.
Kleszczynski, K.
Skobowiat, C.
Slominski, A.T.
Paus, R.
author_facet Fischer, T.W.
Bergmann, A.
Kruse, N.
Kleszczynski, K.
Skobowiat, C.
Slominski, A.T.
Paus, R.
author_sort Fischer, T.W.
collection PubMed
description BACKGROUND: Human hair is highly responsive to stress, and human scalp hair follicles (HFs) contain a peripheral neuroendocrine equivalent of the systemic hypothalamic–pituitary–adrenal (HPA) stress axis. Androgenetic alopecia (AGA) is supposed to be aggravated by stress. We used corticotropin-releasing hormone (CRH), which triggers the HPA axis, to induce a stress response in human ex vivo male AGA HFs. Caffeine is known to reverse testosterone-mediated hair growth inhibition in the same hair organ culture model. OBJECTIVES: To investigate whether caffeine would antagonize CRH-mediated stress in these HFs. METHODS: HFs from balding vertex area scalp biopsies of men affected by AGA were incubated with CRH (10(−7) mol L(−1)) with or without caffeine (0·001% or 0·005%). RESULTS: Compared to controls, CRH significantly enhanced the expression of catagen-inducing transforming growth factor-β2 (TGF-β2) (P < 0·001), CRH receptors 1 and 2 (CRH-R1/2) (P < 0·01), adrenocorticotropic hormone (ACTH) (P < 0·001) and melanocortin receptor 2 (MC-R2) (P < 0·001), and additional stress-associated parameters, substance P and p75 neurotrophin receptor (p75(NTR)). CRH inhibited matrix keratinocyte proliferation and expression of anagen-promoting insulin-like growth factor-1 (IGF-1) and the pro-proliferative nerve growth factor receptor NGF-tyrosine kinase receptor A (TrkA). Caffeine significantly counteracted all described stress effects and additionally enhanced inositol trisphosphate receptor (IP(3)-R), for the first time detected in human HFs. CONCLUSIONS: These findings provide the first evidence in ex vivo human AGA HFs that the stress mediator CRH induces not only a complex intrafollicular HPA response, but also a non-HPA-related stress response. Moreover, we show that these effects can be effectively antagonized by caffeine. Thus, these data strongly support the hypothesis that stress can impair human hair physiology and induce hair loss, and that caffeine may effectively counteract stress-induced hair damage and possibly prevent stress-induced hair loss.
format Online
Article
Text
id pubmed-7962141
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-79621412022-01-01 New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic–pituitary–adrenal (HPA) axis (CRH-R1/2, IP(3)-R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75(NTR) and TrkA) in ex vivo human male androgenetic scalp hair follicles Fischer, T.W. Bergmann, A. Kruse, N. Kleszczynski, K. Skobowiat, C. Slominski, A.T. Paus, R. Br J Dermatol Article BACKGROUND: Human hair is highly responsive to stress, and human scalp hair follicles (HFs) contain a peripheral neuroendocrine equivalent of the systemic hypothalamic–pituitary–adrenal (HPA) stress axis. Androgenetic alopecia (AGA) is supposed to be aggravated by stress. We used corticotropin-releasing hormone (CRH), which triggers the HPA axis, to induce a stress response in human ex vivo male AGA HFs. Caffeine is known to reverse testosterone-mediated hair growth inhibition in the same hair organ culture model. OBJECTIVES: To investigate whether caffeine would antagonize CRH-mediated stress in these HFs. METHODS: HFs from balding vertex area scalp biopsies of men affected by AGA were incubated with CRH (10(−7) mol L(−1)) with or without caffeine (0·001% or 0·005%). RESULTS: Compared to controls, CRH significantly enhanced the expression of catagen-inducing transforming growth factor-β2 (TGF-β2) (P < 0·001), CRH receptors 1 and 2 (CRH-R1/2) (P < 0·01), adrenocorticotropic hormone (ACTH) (P < 0·001) and melanocortin receptor 2 (MC-R2) (P < 0·001), and additional stress-associated parameters, substance P and p75 neurotrophin receptor (p75(NTR)). CRH inhibited matrix keratinocyte proliferation and expression of anagen-promoting insulin-like growth factor-1 (IGF-1) and the pro-proliferative nerve growth factor receptor NGF-tyrosine kinase receptor A (TrkA). Caffeine significantly counteracted all described stress effects and additionally enhanced inositol trisphosphate receptor (IP(3)-R), for the first time detected in human HFs. CONCLUSIONS: These findings provide the first evidence in ex vivo human AGA HFs that the stress mediator CRH induces not only a complex intrafollicular HPA response, but also a non-HPA-related stress response. Moreover, we show that these effects can be effectively antagonized by caffeine. Thus, these data strongly support the hypothesis that stress can impair human hair physiology and induce hair loss, and that caffeine may effectively counteract stress-induced hair damage and possibly prevent stress-induced hair loss. 2020-06-24 2021-01 /pmc/articles/PMC7962141/ /pubmed/32271938 http://dx.doi.org/10.1111/bjd.19115 Text en This is an open access article under the terms of the Creative Commons Attribution-NonCommercial (http://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Article
Fischer, T.W.
Bergmann, A.
Kruse, N.
Kleszczynski, K.
Skobowiat, C.
Slominski, A.T.
Paus, R.
New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic–pituitary–adrenal (HPA) axis (CRH-R1/2, IP(3)-R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75(NTR) and TrkA) in ex vivo human male androgenetic scalp hair follicles
title New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic–pituitary–adrenal (HPA) axis (CRH-R1/2, IP(3)-R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75(NTR) and TrkA) in ex vivo human male androgenetic scalp hair follicles
title_full New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic–pituitary–adrenal (HPA) axis (CRH-R1/2, IP(3)-R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75(NTR) and TrkA) in ex vivo human male androgenetic scalp hair follicles
title_fullStr New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic–pituitary–adrenal (HPA) axis (CRH-R1/2, IP(3)-R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75(NTR) and TrkA) in ex vivo human male androgenetic scalp hair follicles
title_full_unstemmed New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic–pituitary–adrenal (HPA) axis (CRH-R1/2, IP(3)-R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75(NTR) and TrkA) in ex vivo human male androgenetic scalp hair follicles
title_short New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic–pituitary–adrenal (HPA) axis (CRH-R1/2, IP(3)-R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75(NTR) and TrkA) in ex vivo human male androgenetic scalp hair follicles
title_sort new effects of caffeine on corticotropin-releasing hormone (crh)-induced stress along the intrafollicular classical hypothalamic–pituitary–adrenal (hpa) axis (crh-r1/2, ip(3)-r, acth, mc-r2) and the neurogenic non-hpa axis (substance p, p75(ntr) and trka) in ex vivo human male androgenetic scalp hair follicles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962141/
https://www.ncbi.nlm.nih.gov/pubmed/32271938
http://dx.doi.org/10.1111/bjd.19115
work_keys_str_mv AT fischertw neweffectsofcaffeineoncorticotropinreleasinghormonecrhinducedstressalongtheintrafollicularclassicalhypothalamicpituitaryadrenalhpaaxiscrhr12ip3racthmcr2andtheneurogenicnonhpaaxissubstancepp75ntrandtrkainexvivohumanmaleandrogeneticscalphairfollicles
AT bergmanna neweffectsofcaffeineoncorticotropinreleasinghormonecrhinducedstressalongtheintrafollicularclassicalhypothalamicpituitaryadrenalhpaaxiscrhr12ip3racthmcr2andtheneurogenicnonhpaaxissubstancepp75ntrandtrkainexvivohumanmaleandrogeneticscalphairfollicles
AT krusen neweffectsofcaffeineoncorticotropinreleasinghormonecrhinducedstressalongtheintrafollicularclassicalhypothalamicpituitaryadrenalhpaaxiscrhr12ip3racthmcr2andtheneurogenicnonhpaaxissubstancepp75ntrandtrkainexvivohumanmaleandrogeneticscalphairfollicles
AT kleszczynskik neweffectsofcaffeineoncorticotropinreleasinghormonecrhinducedstressalongtheintrafollicularclassicalhypothalamicpituitaryadrenalhpaaxiscrhr12ip3racthmcr2andtheneurogenicnonhpaaxissubstancepp75ntrandtrkainexvivohumanmaleandrogeneticscalphairfollicles
AT skobowiatc neweffectsofcaffeineoncorticotropinreleasinghormonecrhinducedstressalongtheintrafollicularclassicalhypothalamicpituitaryadrenalhpaaxiscrhr12ip3racthmcr2andtheneurogenicnonhpaaxissubstancepp75ntrandtrkainexvivohumanmaleandrogeneticscalphairfollicles
AT slominskiat neweffectsofcaffeineoncorticotropinreleasinghormonecrhinducedstressalongtheintrafollicularclassicalhypothalamicpituitaryadrenalhpaaxiscrhr12ip3racthmcr2andtheneurogenicnonhpaaxissubstancepp75ntrandtrkainexvivohumanmaleandrogeneticscalphairfollicles
AT pausr neweffectsofcaffeineoncorticotropinreleasinghormonecrhinducedstressalongtheintrafollicularclassicalhypothalamicpituitaryadrenalhpaaxiscrhr12ip3racthmcr2andtheneurogenicnonhpaaxissubstancepp75ntrandtrkainexvivohumanmaleandrogeneticscalphairfollicles