Cargando…
Kssd: sequence dimensionality reduction by k-mer substring space sampling enables real-time large-scale datasets analysis
Here, we develop k -mer substring space decomposition (Kssd), a sketching technique which is significantly faster and more accurate than current sketching methods. We show that it is the only method that can be used for large-scale dataset comparisons at population resolution on simulated and real d...
Autores principales: | Yi, Huiguang, Lin, Yanling, Lin, Chengqi, Jin, Wenfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962209/ https://www.ncbi.nlm.nih.gov/pubmed/33726811 http://dx.doi.org/10.1186/s13059-021-02303-4 |
Ejemplares similares
-
RabbitKSSD: accelerating genome distance estimation on modern multi-core architectures
por: Xu, Xiaoming, et al.
Publicado: (2023) -
Mining Unique-m Substrings from Genomes
por: Ye, Kai, et al.
Publicado: (2010) -
GARS: Genetic Algorithm for the identification of a Robust Subset of features in high-dimensional datasets
por: Chiesa, Mattia, et al.
Publicado: (2020) -
SKESA: strategic k-mer extension for scrupulous assemblies
por: Souvorov, Alexandre, et al.
Publicado: (2018) -
Visualising very large phylogenetic trees in three dimensional hyperbolic space
por: Hughes, Timothy, et al.
Publicado: (2004)