Cargando…

Reliability of a dried urine test for comprehensive assessment of urine hormones and metabolites

BACKGROUND: Mass spectrometry allows for analysis of multiple hormone and organic acid metabolites from small urine volumes; however, to assess the full extent of daily hormone production, 24-h urine collections are usually required. The aims of this study were, first, to confirm that mass spectrome...

Descripción completa

Detalles Bibliográficos
Autores principales: Newman, Mark, Curran, Desmond A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962249/
https://www.ncbi.nlm.nih.gov/pubmed/33722278
http://dx.doi.org/10.1186/s13065-021-00744-3
Descripción
Sumario:BACKGROUND: Mass spectrometry allows for analysis of multiple hormone and organic acid metabolites from small urine volumes; however, to assess the full extent of daily hormone production, 24-h urine collections are usually required. The aims of this study were, first, to confirm that mass spectrometric analysis of an array of hormones and organic acids would yield similar results in both liquid and dried urine, and, second, to determine if collection of four dried spot urine samples could be substituted for a 24-h collection when measuring reproductive hormones. METHODS: Two study populations were included in this prospective observational study. Twenty individuals collected both a spot liquid urine and dried urine on filter paper to analyze eight organic acids. A second group of 26 individuals collected both a 24-h urine and four dried spot urines during waking hours throughout the same day for evaluation of 17 reproductive hormones and metabolites; data from 18 of these individuals were available to compare liquid versus dried urine results. Dried urine was extracted, hydrolyzed, and derivatized before analysis by mass spectrometry; all analytes from dried urine were normalized to urine creatinine. RESULTS: Reproductive hormone results from dried and liquid urine were in excellent agreement with intraclass correlation coefficients (ICCs) greater than 0.90; comparison of dried to liquid urine for organic acids showed good to excellent agreement (ICC range: 0.75 to 0.99). Comparison between the 4-spot urine collection and 24-h urine collection methods showed excellent agreement (ICC > 0.9) for 14 of the 17 urine metabolites and good agreement for the others (ICC 0.78 to 0.85) with no systematic differences between the two methods of collection. CONCLUSIONS: The burden of urine collection can be reduced using collection of four spot dried urines on filter paper without compromising comparability with hormone results from a 24-h urine collection. A large number of urine analytes can be assessed from the dried urine with similar results to those from liquid urine. Given the ease of sample handling, this 4-spot dried urine assay would be useful for both clinical assessment of patients and for large epidemiologic studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13065-021-00744-3.