Cargando…
Learning chemistry: exploring the suitability of machine learning for the task of structure-based chemical ontology classification
Chemical data is increasingly openly available in databases such as PubChem, which contains approximately 110 million compound entries as of February 2021. With the availability of data at such scale, the burden has shifted to organisation, analysis and interpretation. Chemical ontologies provide st...
Autores principales: | Hastings, Janna, Glauer, Martin, Memariani, Adel, Neuhaus, Fabian, Mossakowski, Till |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962259/ https://www.ncbi.nlm.nih.gov/pubmed/33726837 http://dx.doi.org/10.1186/s13321-021-00500-8 |
Ejemplares similares
-
Structure-based classification and ontology in chemistry
por: Hastings, Janna, et al.
Publicado: (2012) -
Harnessing ontology and machine learning for RSO classification
por: Liu, Bin, et al.
Publicado: (2016) -
Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology
por: Hill, David P, et al.
Publicado: (2013) -
ChEBI: a chemistry ontology and database
por: de Matos, Paula, et al.
Publicado: (2010) -
Chemical ontologies: what are they, what are they for and what are the challenges
por: Hastings, Janna, et al.
Publicado: (2011)