Cargando…

Correlation analysis of epicardial adipose tissue thickness, C-reactive protein, interleukin-6, visfatin, juxtaposed with another zinc finger protein 1, and type 2 diabetic macroangiopathy

BACKGROUND: To investigate the correlation between the thickness of epicardial adipose tissue (EAT), C-reactive protein (CRP), interleukin (IL) -6, visfatin, juxtaposed with another zinc finger protein 1 (JAZF1) and type 2 diabetic mellitus (T2DM) macroangiopathy. METHODS: The study enrolled 82 pati...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Yuan-Yuan, Peng, Hai-Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962295/
https://www.ncbi.nlm.nih.gov/pubmed/33722242
http://dx.doi.org/10.1186/s12944-021-01451-7
Descripción
Sumario:BACKGROUND: To investigate the correlation between the thickness of epicardial adipose tissue (EAT), C-reactive protein (CRP), interleukin (IL) -6, visfatin, juxtaposed with another zinc finger protein 1 (JAZF1) and type 2 diabetic mellitus (T2DM) macroangiopathy. METHODS: The study enrolled 82 patients with T2DM with macroangiopathy (the Complication Group), and 85 patients with T2DM (the Diabetes Group) who were admitted to Shandong Provincial Third Hospital from February 2018 to February 2020. In addition, 90 healthy people who underwent physical examination at the same hospital during the same period were enrolled (the Healthy Control Group). Age, gender, height, weight, waist circumference (WC), hip circumference (HC), diabetic course and therapeutic drugs, waist hip ratio (WHR), and body mass index (BMI) were recorded and calculated. RESULTS: The baseline characteristics of the three groups were comparable, and the diabetic course of the Complication Group and the Diabetes Group was not significantly different (P > 0.05). The WHR of the Complication Group was higher than that of the Diabetes Group and the Healthy Control Group, with statistical significance (P < 0.05). The FPG, 2hPG, HbA1C, CRP, IL-6, Visfatin, JAZF1, HOMA-IR, EAT thickness, and baPWV of the Complication Group were all higher than those of the Diabetes Group and the Healthy Control Group (P < 0.05, respectively). The JAZF1 and FIns of the Complication Group and Diabetes Group were lower than those of the Healthy Control Group, and JAZF1 of the Complication Group was lower than the Diabetes Group with statistical significance (P<0.05, respectively). Pearson correlation analysis showed that the EAT thickness was positively correlated with CRP, IL-6, visfatin, and JAZF1 (r = 0.387, 0.451, 0.283, 0.301, respectively, all P<0.001). Pearson correlation analysis showed that baPWV was positively correlated with EAT thickness, CRP, IL-6, visfatin, and JAZF1 (r = 0.293, 0.382, 0.473, 0.286, respectively, all P < 0.001). Multivariate stepwise regression analysis showed that FPG, 2hPG, HbA1C, CRP, IL-6, visfatin, JAZF1, and EAT thickness were independent risk factors that affected T2DM macroangiopathy. CONCLUSIONS: Clinical monitoring and treatment of T2DM macroangiopathy can use CRP, IL-6, Visfatin, JAZF1, and EAT thickness as new targets to delay the progression of the disease. Further research on the relationship between the above factors and the pathogenesis of T2DM macroangiopathy may be helpful provide new treatment strategies.