Cargando…
Is It Time for Machine Learning Algorithms to Predict the Risk of Kidney Failure in Patients with Chronic Kidney Disease?
Autores principales: | Thongprayoon, Charat, Kaewput, Wisit, Choudhury, Avishek, Hansrivijit, Panupong, Mao, Michael A., Cheungpasitporn, Wisit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962455/ https://www.ncbi.nlm.nih.gov/pubmed/33800205 http://dx.doi.org/10.3390/jcm10051121 |
Ejemplares similares
-
Predicting Acute Kidney Injury after Cardiac Surgery by Machine Learning Approaches
por: Thongprayoon, Charat, et al.
Publicado: (2020) -
Recent Advances and Clinical Outcomes of Kidney Transplantation
por: Thongprayoon, Charat, et al.
Publicado: (2020) -
Rituximab or plasmapheresis for prevention of recurrent focal segmental glomerulosclerosis after kidney transplantation: A systematic review and meta-analysis
por: Boonpheng, Boonphiphop, et al.
Publicado: (2021) -
Diagnostics, Risk Factors, Treatment and Outcomes of Acute Kidney Injury in a New Paradigm
por: Thongprayoon, Charat, et al.
Publicado: (2020) -
Revolutionizing Chronic Kidney Disease Management with Machine Learning and Artificial Intelligence
por: Krisanapan, Pajaree, et al.
Publicado: (2023)