Cargando…
Prognostic Value of Deep Learning-Mediated Treatment Monitoring in Lung Cancer Patients Receiving Immunotherapy
BACKGROUND: Checkpoint inhibitors provided sustained clinical benefit to metastatic lung cancer patients. Nonetheless, prognostic markers in metastatic settings are still under research. Imaging offers distinctive advantages, providing whole-body information non-invasively, while routinely available...
Autores principales: | Trebeschi, Stefano, Bodalal, Zuhir, Boellaard, Thierry N., Tareco Bucho, Teresa M., Drago, Silvia G., Kurilova, Ieva, Calin-Vainak, Adriana M., Delli Pizzi, Andrea, Muller, Mirte, Hummelink, Karlijn, Hartemink, Koen J., Nguyen-Kim, Thi Dan Linh, Smit, Egbert F., Aerts, Hugo J. W. L., Beets-Tan, Regina G. H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962549/ https://www.ncbi.nlm.nih.gov/pubmed/33738253 http://dx.doi.org/10.3389/fonc.2021.609054 |
Ejemplares similares
-
Development of a Prognostic AI-Monitor for Metastatic Urothelial Cancer Patients Receiving Immunotherapy
por: Trebeschi, Stefano, et al.
Publicado: (2021) -
Radiomics: a critical step towards integrated healthcare
por: Bodalal, Zuhir, et al.
Publicado: (2018) -
Artificial intelligence-based diagnosis of asbestosis: analysis of a database with applicants for asbestosis state aid
por: Groot Lipman, Kevin B. W., et al.
Publicado: (2022) -
Radiomic signatures from T2W and DWI MRI are predictive of tumour hypoxia in colorectal liver metastases
por: Bodalal, Zuhir, et al.
Publicado: (2023) -
Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers
por: Trebeschi, S, et al.
Publicado: (2019)