Cargando…
Expedition into Exosome Biology: A Perspective of Progress from Discovery to Therapeutic Development
SIMPLE SUMMARY: Exosomes symbolize membrane-enclosed entities of endocytic origin. They play an important role in the intracellular communication by shuttling proteins, nucleic acids, etc., between cells of different tissues and organs. Recent studies have revealed an interplay between cell and exos...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962655/ https://www.ncbi.nlm.nih.gov/pubmed/33800282 http://dx.doi.org/10.3390/cancers13051157 |
Sumario: | SIMPLE SUMMARY: Exosomes symbolize membrane-enclosed entities of endocytic origin. They play an important role in the intracellular communication by shuttling proteins, nucleic acids, etc., between cells of different tissues and organs. Recent studies have revealed an interplay between cell and exosomes; thereby highlighted their importance in disease diagnosis and possible implication for use in therapeutics. They are currently been explored for the strategic development of platforms towards their employment in achieving the target specific delivery of therapeutics. This review summarizes the composition, biogenesis and trafficking of exosomes in different cellular backgrounds and explores their multifarious role as drug delivery vehicles towards achieving correct functionality and efficacy of the therapeutic molecules. Additionally, it discusses genetic engineering platforms for employment in the designing of optimal delivery modules for their application in the delivery of drugs as part of anticancer therapy. ABSTRACT: Exosomes are membrane-enclosed distinct cellular entities of endocytic origin that shuttle proteins and RNA molecules intercellularly for communication purposes. Their surface is embossed by a huge variety of proteins, some of which are used as diagnostic markers. Exosomes are being explored for potential drug delivery, although their therapeutic utilities are impeded by gaps in knowledge regarding their formation and function under physiological condition and by lack of methods capable of shedding light on intraluminal vesicle release at the target site. Nonetheless, exosomes offer a promising means of developing systems that enable the specific delivery of therapeutics in diseases like cancer. This review summarizes information on donor cell types, cargoes, cargo loading, routes of administration, and the engineering of exosomal surfaces for specific peptides that increase target specificity and as such, therapeutic delivery. |
---|