Cargando…
Kernel Probabilistic K-Means Clustering
Kernel fuzzy c-means (KFCM) is a significantly improved version of fuzzy c-means (FCM) for processing linearly inseparable datasets. However, for fuzzification parameter [Formula: see text] , the problem of KFCM (kernel fuzzy c-means) cannot be solved by Lagrangian optimization. To solve this proble...
Autores principales: | Liu, Bowen, Zhang, Ting, Li, Yujian, Liu, Zhaoying, Zhang, Zhilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962817/ https://www.ncbi.nlm.nih.gov/pubmed/33800353 http://dx.doi.org/10.3390/s21051892 |
Ejemplares similares
-
Iterative Min Cut Clustering Based on Graph Cuts
por: Liu, Bowen, et al.
Publicado: (2021) -
Consensus Kernel K-Means Clustering for Incomplete Multiview Data
por: Ye, Yongkai, et al.
Publicado: (2017) -
Localized Simple Multiple Kernel K-Means Clustering with Matrix-Induced Regularization
por: Qiu, Jiaji, et al.
Publicado: (2023) -
Differential privacy fuzzy C-means clustering algorithm based on gaussian kernel function
por: Zhang, Yaling, et al.
Publicado: (2021) -
Photovoltaic Array Fault Diagnosis Based on Gaussian Kernel Fuzzy C-Means Clustering Algorithm
por: Liu, Shengyang, et al.
Publicado: (2019)