Cargando…
Prolonged Post-Polymerization Biocompatibility of Polymethylmethacrylate-Tri-n-Butylborane (PMMA-TBB) Bone Cement
Polymethylmethacrylate (PMMA)-based acrylic bone cement is commonly used to fix bone and metallic implants in orthopedic procedures. The polymerization initiator tri-n-butylborane (TBB) has been reported to significantly reduce the cytotoxicity of PMMA-based bone cement compared to benzoyl peroxide...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962826/ https://www.ncbi.nlm.nih.gov/pubmed/33800383 http://dx.doi.org/10.3390/ma14051289 |
_version_ | 1783665528808669184 |
---|---|
author | Saruta, Juri Ozawa, Ryotaro Hamajima, Kosuke Saita, Makiko Sato, Nobuaki Ishijima, Manabu Kitajima, Hiroaki Ogawa, Takahiro |
author_facet | Saruta, Juri Ozawa, Ryotaro Hamajima, Kosuke Saita, Makiko Sato, Nobuaki Ishijima, Manabu Kitajima, Hiroaki Ogawa, Takahiro |
author_sort | Saruta, Juri |
collection | PubMed |
description | Polymethylmethacrylate (PMMA)-based acrylic bone cement is commonly used to fix bone and metallic implants in orthopedic procedures. The polymerization initiator tri-n-butylborane (TBB) has been reported to significantly reduce the cytotoxicity of PMMA-based bone cement compared to benzoyl peroxide (BPO). However, it is unknown whether this benefit is temporary or long-lasting, which is important to establish given that bone cement is expected to remain in situ permanently. Here, we compared the biocompatibility of PMMA-TBB and PMMA-BPO bone cements over several days. Rat femur-derived osteoblasts were seeded onto two commercially-available PMMA-BPO bone cements and experimental PMMA-TBB polymerized for one day, three days, or seven days. Significantly more cells attached to PMMA-TBB bone cement during the initial stages of culture than on both PMMA-BPO cements, regardless of the age of the materials. Proliferative activity and differentiation markers including alkaline phosphatase production, calcium deposition, and osteogenic gene expression were consistently and considerably higher in cells grown on PMMA-TBB than on PMMA-BPO, regardless of cement age. Although osteoblastic phenotypes were more favorable on older specimens for all three cement types, biocompatibility increased between three-day-old and seven-day-old PMMA-BPO specimens, and between one-day-old and three-day-old PMMA-TBB specimens. PMMA-BPO materials produced more free radicals than PMMA-TBB regardless of the age of the material. These data suggest that PMMA-TBB maintains superior biocompatibility over PMMA-BPO bone cements over prolonged periods of at least seven days post-polymerization. This superior biocompatibility can be ascribed to both low baseline cytotoxicity and a further rapid reduction in cytotoxicity, representing a new biological advantage of PMMA-TBB as a novel bone cement material. |
format | Online Article Text |
id | pubmed-7962826 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79628262021-03-17 Prolonged Post-Polymerization Biocompatibility of Polymethylmethacrylate-Tri-n-Butylborane (PMMA-TBB) Bone Cement Saruta, Juri Ozawa, Ryotaro Hamajima, Kosuke Saita, Makiko Sato, Nobuaki Ishijima, Manabu Kitajima, Hiroaki Ogawa, Takahiro Materials (Basel) Article Polymethylmethacrylate (PMMA)-based acrylic bone cement is commonly used to fix bone and metallic implants in orthopedic procedures. The polymerization initiator tri-n-butylborane (TBB) has been reported to significantly reduce the cytotoxicity of PMMA-based bone cement compared to benzoyl peroxide (BPO). However, it is unknown whether this benefit is temporary or long-lasting, which is important to establish given that bone cement is expected to remain in situ permanently. Here, we compared the biocompatibility of PMMA-TBB and PMMA-BPO bone cements over several days. Rat femur-derived osteoblasts were seeded onto two commercially-available PMMA-BPO bone cements and experimental PMMA-TBB polymerized for one day, three days, or seven days. Significantly more cells attached to PMMA-TBB bone cement during the initial stages of culture than on both PMMA-BPO cements, regardless of the age of the materials. Proliferative activity and differentiation markers including alkaline phosphatase production, calcium deposition, and osteogenic gene expression were consistently and considerably higher in cells grown on PMMA-TBB than on PMMA-BPO, regardless of cement age. Although osteoblastic phenotypes were more favorable on older specimens for all three cement types, biocompatibility increased between three-day-old and seven-day-old PMMA-BPO specimens, and between one-day-old and three-day-old PMMA-TBB specimens. PMMA-BPO materials produced more free radicals than PMMA-TBB regardless of the age of the material. These data suggest that PMMA-TBB maintains superior biocompatibility over PMMA-BPO bone cements over prolonged periods of at least seven days post-polymerization. This superior biocompatibility can be ascribed to both low baseline cytotoxicity and a further rapid reduction in cytotoxicity, representing a new biological advantage of PMMA-TBB as a novel bone cement material. MDPI 2021-03-08 /pmc/articles/PMC7962826/ /pubmed/33800383 http://dx.doi.org/10.3390/ma14051289 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Saruta, Juri Ozawa, Ryotaro Hamajima, Kosuke Saita, Makiko Sato, Nobuaki Ishijima, Manabu Kitajima, Hiroaki Ogawa, Takahiro Prolonged Post-Polymerization Biocompatibility of Polymethylmethacrylate-Tri-n-Butylborane (PMMA-TBB) Bone Cement |
title | Prolonged Post-Polymerization Biocompatibility of Polymethylmethacrylate-Tri-n-Butylborane (PMMA-TBB) Bone Cement |
title_full | Prolonged Post-Polymerization Biocompatibility of Polymethylmethacrylate-Tri-n-Butylborane (PMMA-TBB) Bone Cement |
title_fullStr | Prolonged Post-Polymerization Biocompatibility of Polymethylmethacrylate-Tri-n-Butylborane (PMMA-TBB) Bone Cement |
title_full_unstemmed | Prolonged Post-Polymerization Biocompatibility of Polymethylmethacrylate-Tri-n-Butylborane (PMMA-TBB) Bone Cement |
title_short | Prolonged Post-Polymerization Biocompatibility of Polymethylmethacrylate-Tri-n-Butylborane (PMMA-TBB) Bone Cement |
title_sort | prolonged post-polymerization biocompatibility of polymethylmethacrylate-tri-n-butylborane (pmma-tbb) bone cement |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962826/ https://www.ncbi.nlm.nih.gov/pubmed/33800383 http://dx.doi.org/10.3390/ma14051289 |
work_keys_str_mv | AT sarutajuri prolongedpostpolymerizationbiocompatibilityofpolymethylmethacrylatetrinbutylboranepmmatbbbonecement AT ozawaryotaro prolongedpostpolymerizationbiocompatibilityofpolymethylmethacrylatetrinbutylboranepmmatbbbonecement AT hamajimakosuke prolongedpostpolymerizationbiocompatibilityofpolymethylmethacrylatetrinbutylboranepmmatbbbonecement AT saitamakiko prolongedpostpolymerizationbiocompatibilityofpolymethylmethacrylatetrinbutylboranepmmatbbbonecement AT satonobuaki prolongedpostpolymerizationbiocompatibilityofpolymethylmethacrylatetrinbutylboranepmmatbbbonecement AT ishijimamanabu prolongedpostpolymerizationbiocompatibilityofpolymethylmethacrylatetrinbutylboranepmmatbbbonecement AT kitajimahiroaki prolongedpostpolymerizationbiocompatibilityofpolymethylmethacrylatetrinbutylboranepmmatbbbonecement AT ogawatakahiro prolongedpostpolymerizationbiocompatibilityofpolymethylmethacrylatetrinbutylboranepmmatbbbonecement |