Cargando…

Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment

The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex d...

Descripción completa

Detalles Bibliográficos
Autores principales: Marcos-Zambrano, Laura Judith, Karaduzovic-Hadziabdic, Kanita, Loncar Turukalo, Tatjana, Przymus, Piotr, Trajkovik, Vladimir, Aasmets, Oliver, Berland, Magali, Gruca, Aleksandra, Hasic, Jasminka, Hron, Karel, Klammsteiner, Thomas, Kolev, Mikhail, Lahti, Leo, Lopes, Marta B., Moreno, Victor, Naskinova, Irina, Org, Elin, Paciência, Inês, Papoutsoglou, Georgios, Shigdel, Rajesh, Stres, Blaz, Vilne, Baiba, Yousef, Malik, Zdravevski, Eftim, Tsamardinos, Ioannis, Carrillo de Santa Pau, Enrique, Claesson, Marcus J., Moreno-Indias, Isabel, Truu, Jaak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962872/
https://www.ncbi.nlm.nih.gov/pubmed/33737920
http://dx.doi.org/10.3389/fmicb.2021.634511
_version_ 1783665537213005824
author Marcos-Zambrano, Laura Judith
Karaduzovic-Hadziabdic, Kanita
Loncar Turukalo, Tatjana
Przymus, Piotr
Trajkovik, Vladimir
Aasmets, Oliver
Berland, Magali
Gruca, Aleksandra
Hasic, Jasminka
Hron, Karel
Klammsteiner, Thomas
Kolev, Mikhail
Lahti, Leo
Lopes, Marta B.
Moreno, Victor
Naskinova, Irina
Org, Elin
Paciência, Inês
Papoutsoglou, Georgios
Shigdel, Rajesh
Stres, Blaz
Vilne, Baiba
Yousef, Malik
Zdravevski, Eftim
Tsamardinos, Ioannis
Carrillo de Santa Pau, Enrique
Claesson, Marcus J.
Moreno-Indias, Isabel
Truu, Jaak
author_facet Marcos-Zambrano, Laura Judith
Karaduzovic-Hadziabdic, Kanita
Loncar Turukalo, Tatjana
Przymus, Piotr
Trajkovik, Vladimir
Aasmets, Oliver
Berland, Magali
Gruca, Aleksandra
Hasic, Jasminka
Hron, Karel
Klammsteiner, Thomas
Kolev, Mikhail
Lahti, Leo
Lopes, Marta B.
Moreno, Victor
Naskinova, Irina
Org, Elin
Paciência, Inês
Papoutsoglou, Georgios
Shigdel, Rajesh
Stres, Blaz
Vilne, Baiba
Yousef, Malik
Zdravevski, Eftim
Tsamardinos, Ioannis
Carrillo de Santa Pau, Enrique
Claesson, Marcus J.
Moreno-Indias, Isabel
Truu, Jaak
author_sort Marcos-Zambrano, Laura Judith
collection PubMed
description The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach.
format Online
Article
Text
id pubmed-7962872
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-79628722021-03-17 Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment Marcos-Zambrano, Laura Judith Karaduzovic-Hadziabdic, Kanita Loncar Turukalo, Tatjana Przymus, Piotr Trajkovik, Vladimir Aasmets, Oliver Berland, Magali Gruca, Aleksandra Hasic, Jasminka Hron, Karel Klammsteiner, Thomas Kolev, Mikhail Lahti, Leo Lopes, Marta B. Moreno, Victor Naskinova, Irina Org, Elin Paciência, Inês Papoutsoglou, Georgios Shigdel, Rajesh Stres, Blaz Vilne, Baiba Yousef, Malik Zdravevski, Eftim Tsamardinos, Ioannis Carrillo de Santa Pau, Enrique Claesson, Marcus J. Moreno-Indias, Isabel Truu, Jaak Front Microbiol Microbiology The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach. Frontiers Media S.A. 2021-02-19 /pmc/articles/PMC7962872/ /pubmed/33737920 http://dx.doi.org/10.3389/fmicb.2021.634511 Text en Copyright © 2021 Marcos-Zambrano, Karaduzovic-Hadziabdic, Loncar Turukalo, Przymus, Trajkovik, Aasmets, Berland, Gruca, Hasic, Hron, Klammsteiner, Kolev, Lahti, Lopes, Moreno, Naskinova, Org, Paciência, Papoutsoglou, Shigdel, Stres, Vilne, Yousef, Zdravevski, Tsamardinos, Carrillo de Santa Pau, Claesson, Moreno-Indias and Truu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Marcos-Zambrano, Laura Judith
Karaduzovic-Hadziabdic, Kanita
Loncar Turukalo, Tatjana
Przymus, Piotr
Trajkovik, Vladimir
Aasmets, Oliver
Berland, Magali
Gruca, Aleksandra
Hasic, Jasminka
Hron, Karel
Klammsteiner, Thomas
Kolev, Mikhail
Lahti, Leo
Lopes, Marta B.
Moreno, Victor
Naskinova, Irina
Org, Elin
Paciência, Inês
Papoutsoglou, Georgios
Shigdel, Rajesh
Stres, Blaz
Vilne, Baiba
Yousef, Malik
Zdravevski, Eftim
Tsamardinos, Ioannis
Carrillo de Santa Pau, Enrique
Claesson, Marcus J.
Moreno-Indias, Isabel
Truu, Jaak
Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment
title Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment
title_full Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment
title_fullStr Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment
title_full_unstemmed Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment
title_short Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment
title_sort applications of machine learning in human microbiome studies: a review on feature selection, biomarker identification, disease prediction and treatment
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962872/
https://www.ncbi.nlm.nih.gov/pubmed/33737920
http://dx.doi.org/10.3389/fmicb.2021.634511
work_keys_str_mv AT marcoszambranolaurajudith applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT karaduzovichadziabdickanita applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT loncarturukalotatjana applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT przymuspiotr applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT trajkovikvladimir applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT aasmetsoliver applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT berlandmagali applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT grucaaleksandra applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT hasicjasminka applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT hronkarel applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT klammsteinerthomas applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT kolevmikhail applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT lahtileo applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT lopesmartab applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT morenovictor applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT naskinovairina applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT orgelin applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT pacienciaines applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT papoutsoglougeorgios applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT shigdelrajesh applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT stresblaz applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT vilnebaiba applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT yousefmalik applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT zdravevskieftim applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT tsamardinosioannis applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT carrillodesantapauenrique applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT claessonmarcusj applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT morenoindiasisabel applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment
AT truujaak applicationsofmachinelearninginhumanmicrobiomestudiesareviewonfeatureselectionbiomarkeridentificationdiseasepredictionandtreatment