Cargando…

Gut microbiota profiles in diarrheic patients with co-occurrence of Clostridioides difficile and Blastocystis

Blastocystis and Clostridioides difficile co-occurrence is considered a rare event since the colonization by Blastocystis is prevented under a decrease in beneficial bacteria in the microbiota when there is C. difficile infection (CDI). This scenario has been reported once, but no information on the...

Descripción completa

Detalles Bibliográficos
Autores principales: Vega, Laura, Herrera, Giovanny, Muñoz, Marina, Patarroyo, Manuel A., Maloney, Jenny G., Santín, Monica, Ramírez, Juan David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7963057/
https://www.ncbi.nlm.nih.gov/pubmed/33725006
http://dx.doi.org/10.1371/journal.pone.0248185
Descripción
Sumario:Blastocystis and Clostridioides difficile co-occurrence is considered a rare event since the colonization by Blastocystis is prevented under a decrease in beneficial bacteria in the microbiota when there is C. difficile infection (CDI). This scenario has been reported once, but no information on the gut microbiota profiling is available. The present study is motivated by knowing which members of the microbiota can be found in this rare scenario and how this co-occurrence may impact the abundance of other bacteria, eukaryotes or archaea present in the gut microbiota. This study aimed to describe the bacterial and eukaryotic communities using amplicon-based sequencing of the 16S- and 18S-rRNA regions of three patient groups: (1) Blastocystis and C. difficile infection (B+/C+, n = 31), (2) C. difficile infection only (B˗/C+, n = 44), and (3) without Blastocystis or C. difficile (B˗/C˗, n = 40). Blastocystis was subtyped using amplicon-based sequencing of the 18S-rRNA gene, revealing circulation of subtypes ST1 (43.4%), ST3 (35.85%) and ST5 (20.75%) among the study population. We found that B+/C+ patients had a higher abundance of some beneficial bacteria (such as butyrate producers or bacteria with anti-inflammatory properties) compared with non-Blastocystis-colonized patients, which may suggest a shift towards an increase in beneficial bacteria when Blastocystis colonizes patients with CDI. Regarding eukaryotic communities, statistical differences in the abundance of some eukaryotic genera between the study groups were not observed. Thus, this study provides preliminary descriptive information of a potential microbiota profiling of differential presence by Blastocystis and C. difficile.