Cargando…
Interactions of Meibum and Tears with Mucomimetic Polymers: A Hint towards the Interplay between the Layers of the Tear Film
Recent clinical findings suggest that mucomimetic polymers (MMP) can alter not only the texture of the aqueous tear but also the spreading and structure of the tear film (TF) lipid layer, thereby allowing for their synchronized performance in vivo. Thus, we aimed to evaluate in vitro (i) the capabil...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7963170/ https://www.ncbi.nlm.nih.gov/pubmed/33803116 http://dx.doi.org/10.3390/ijms22052747 |
Sumario: | Recent clinical findings suggest that mucomimetic polymers (MMP) can alter not only the texture of the aqueous tear but also the spreading and structure of the tear film (TF) lipid layer, thereby allowing for their synchronized performance in vivo. Thus, we aimed to evaluate in vitro (i) the capability of pharmaceutically applicable MMP to ensure the formation of post-evaporative ferning patterns (a characteristic feature of the “healthy” tear colloid) and (ii) the MMP interactions with human meibum films accessed in the course of blink-like deformations via Langmuir surface balance and Brewster angle microscopy (BAM). Four MMP were used- hyaluronic acid (HA), cross-linked hyaluronic acid (CHA), carboxymethyl cellulose (CMC) and gellan gum (GG)- at the concentrations of 0.0001%, 0.001%, 0.01%, 0.05% and 0.1%. Significant differences were observed in the MMP fern formation capability: CHA (≥0.001%) > HA (≥0.01%) = CMC (≥0.01%) > GG (≥0.05%). All MMP affected the spreading of meibum, with BAM micrographs revealing thickening of the films. CHA was particularly efficient, showing concentration-dependent enhancement of tear ferning and of meibomian layer structure, surfactant properties and viscoelasticity. Thus, endogenous and exogenous MMP may play key roles for the concerted action of the TF layers at the ocular surface, revealing novel routes for TF-oriented therapeutic applications. |
---|