Cargando…
Omics Approaches in Adipose Tissue and Skeletal Muscle Addressing the Role of Extracellular Matrix in Obesity and Metabolic Dysfunction
Extracellular matrix (ECM) remodeling plays important roles in both white adipose tissue (WAT) and the skeletal muscle (SM) metabolism. Excessive adipocyte hypertrophy causes fibrosis, inflammation, and metabolic dysfunction in adipose tissue, as well as impaired adipogenesis. Similarly, disturbed E...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7963192/ https://www.ncbi.nlm.nih.gov/pubmed/33803198 http://dx.doi.org/10.3390/ijms22052756 |
_version_ | 1783665585748443136 |
---|---|
author | Anguita-Ruiz, Augusto Bustos-Aibar, Mireia Plaza-Díaz, Julio Mendez-Gutierrez, Andrea Alcalá-Fdez, Jesús Aguilera, Concepción María Ruiz-Ojeda, Francisco Javier |
author_facet | Anguita-Ruiz, Augusto Bustos-Aibar, Mireia Plaza-Díaz, Julio Mendez-Gutierrez, Andrea Alcalá-Fdez, Jesús Aguilera, Concepción María Ruiz-Ojeda, Francisco Javier |
author_sort | Anguita-Ruiz, Augusto |
collection | PubMed |
description | Extracellular matrix (ECM) remodeling plays important roles in both white adipose tissue (WAT) and the skeletal muscle (SM) metabolism. Excessive adipocyte hypertrophy causes fibrosis, inflammation, and metabolic dysfunction in adipose tissue, as well as impaired adipogenesis. Similarly, disturbed ECM remodeling in SM has metabolic consequences such as decreased insulin sensitivity. Most of described ECM molecular alterations have been associated with DNA sequence variation, alterations in gene expression patterns, and epigenetic modifications. Among others, the most important epigenetic mechanism by which cells are able to modulate their gene expression is DNA methylation. Epigenome-Wide Association Studies (EWAS) have become a powerful approach to identify DNA methylation variation associated with biological traits in humans. Likewise, Genome-Wide Association Studies (GWAS) and gene expression microarrays have allowed the study of whole-genome genetics and transcriptomics patterns in obesity and metabolic diseases. The aim of this review is to explore the molecular basis of ECM in WAT and SM remodeling in obesity and the consequences of metabolic complications. For that purpose, we reviewed scientific literature including all omics approaches reporting genetic, epigenetic, and transcriptomic (GWAS, EWAS, and RNA-seq or cDNA arrays) ECM-related alterations in WAT and SM as associated with metabolic dysfunction and obesity. |
format | Online Article Text |
id | pubmed-7963192 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-79631922021-03-17 Omics Approaches in Adipose Tissue and Skeletal Muscle Addressing the Role of Extracellular Matrix in Obesity and Metabolic Dysfunction Anguita-Ruiz, Augusto Bustos-Aibar, Mireia Plaza-Díaz, Julio Mendez-Gutierrez, Andrea Alcalá-Fdez, Jesús Aguilera, Concepción María Ruiz-Ojeda, Francisco Javier Int J Mol Sci Review Extracellular matrix (ECM) remodeling plays important roles in both white adipose tissue (WAT) and the skeletal muscle (SM) metabolism. Excessive adipocyte hypertrophy causes fibrosis, inflammation, and metabolic dysfunction in adipose tissue, as well as impaired adipogenesis. Similarly, disturbed ECM remodeling in SM has metabolic consequences such as decreased insulin sensitivity. Most of described ECM molecular alterations have been associated with DNA sequence variation, alterations in gene expression patterns, and epigenetic modifications. Among others, the most important epigenetic mechanism by which cells are able to modulate their gene expression is DNA methylation. Epigenome-Wide Association Studies (EWAS) have become a powerful approach to identify DNA methylation variation associated with biological traits in humans. Likewise, Genome-Wide Association Studies (GWAS) and gene expression microarrays have allowed the study of whole-genome genetics and transcriptomics patterns in obesity and metabolic diseases. The aim of this review is to explore the molecular basis of ECM in WAT and SM remodeling in obesity and the consequences of metabolic complications. For that purpose, we reviewed scientific literature including all omics approaches reporting genetic, epigenetic, and transcriptomic (GWAS, EWAS, and RNA-seq or cDNA arrays) ECM-related alterations in WAT and SM as associated with metabolic dysfunction and obesity. MDPI 2021-03-09 /pmc/articles/PMC7963192/ /pubmed/33803198 http://dx.doi.org/10.3390/ijms22052756 Text en © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Anguita-Ruiz, Augusto Bustos-Aibar, Mireia Plaza-Díaz, Julio Mendez-Gutierrez, Andrea Alcalá-Fdez, Jesús Aguilera, Concepción María Ruiz-Ojeda, Francisco Javier Omics Approaches in Adipose Tissue and Skeletal Muscle Addressing the Role of Extracellular Matrix in Obesity and Metabolic Dysfunction |
title | Omics Approaches in Adipose Tissue and Skeletal Muscle Addressing the Role of Extracellular Matrix in Obesity and Metabolic Dysfunction |
title_full | Omics Approaches in Adipose Tissue and Skeletal Muscle Addressing the Role of Extracellular Matrix in Obesity and Metabolic Dysfunction |
title_fullStr | Omics Approaches in Adipose Tissue and Skeletal Muscle Addressing the Role of Extracellular Matrix in Obesity and Metabolic Dysfunction |
title_full_unstemmed | Omics Approaches in Adipose Tissue and Skeletal Muscle Addressing the Role of Extracellular Matrix in Obesity and Metabolic Dysfunction |
title_short | Omics Approaches in Adipose Tissue and Skeletal Muscle Addressing the Role of Extracellular Matrix in Obesity and Metabolic Dysfunction |
title_sort | omics approaches in adipose tissue and skeletal muscle addressing the role of extracellular matrix in obesity and metabolic dysfunction |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7963192/ https://www.ncbi.nlm.nih.gov/pubmed/33803198 http://dx.doi.org/10.3390/ijms22052756 |
work_keys_str_mv | AT anguitaruizaugusto omicsapproachesinadiposetissueandskeletalmuscleaddressingtheroleofextracellularmatrixinobesityandmetabolicdysfunction AT bustosaibarmireia omicsapproachesinadiposetissueandskeletalmuscleaddressingtheroleofextracellularmatrixinobesityandmetabolicdysfunction AT plazadiazjulio omicsapproachesinadiposetissueandskeletalmuscleaddressingtheroleofextracellularmatrixinobesityandmetabolicdysfunction AT mendezgutierrezandrea omicsapproachesinadiposetissueandskeletalmuscleaddressingtheroleofextracellularmatrixinobesityandmetabolicdysfunction AT alcalafdezjesus omicsapproachesinadiposetissueandskeletalmuscleaddressingtheroleofextracellularmatrixinobesityandmetabolicdysfunction AT aguileraconcepcionmaria omicsapproachesinadiposetissueandskeletalmuscleaddressingtheroleofextracellularmatrixinobesityandmetabolicdysfunction AT ruizojedafranciscojavier omicsapproachesinadiposetissueandskeletalmuscleaddressingtheroleofextracellularmatrixinobesityandmetabolicdysfunction |