Cargando…

Rapid Quantification of Chlorpromazine Residues in Pork Using Nanosphere-Based Time-Resolved Fluorescence Immunoassay Analyzer

Immunochromatographic assays are good analytical tools for the detection of drug residues. We report a nanosphere-based time-resolved fluorescence immunoassay (nano-TRFIA) based on a monoclonal antibody and a portable TRFIA analyzer for the rapid quantification of chlorpromazine (CPZ) residues in po...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Wei, Wang, Jingneng, Wang, Min, Shen, Juan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7964105/
https://www.ncbi.nlm.nih.gov/pubmed/33763133
http://dx.doi.org/10.1155/2021/6633016
Descripción
Sumario:Immunochromatographic assays are good analytical tools for the detection of drug residues. We report a nanosphere-based time-resolved fluorescence immunoassay (nano-TRFIA) based on a monoclonal antibody and a portable TRFIA analyzer for the rapid quantification of chlorpromazine (CPZ) residues in pork. Under optimal conditions, the nano-TRFIA detected CPZ residues within 6 min of sample pretreatment. The results showed good linearity (R(2) = 0.991), with a limit of detection (LOD) of 0.32 μg/kg, a wide dynamic range of 0.46–10.0 μg/kg, and coefficients of variation (CVs) of the overall intrabatch and interbatch assays of 7.34% and 7.65%, respectively. The nano-TRFIA was also used to detect CPZ at different spiked concentrations in pork, and the results were confirmed via ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The nano-TRFIA was evaluated for the analysis of six commercial pork samples, and the results agreed well with those obtained via UPLC-MS/MS, without significant differences (P > 0.05). Therefore, the proposed nano-TRFIA is a powerful alternative for the rapid and accurate quantification of CPZ residues in pork to meet the required Chinese maximum residue limits for veterinary drugs in foods.