Cargando…
Reinforcement learning and Bayesian data assimilation for model‐informed precision dosing in oncology
Model‐informed precision dosing (MIPD) using therapeutic drug/biomarker monitoring offers the opportunity to significantly improve the efficacy and safety of drug therapies. Current strategies comprise model‐informed dosing tables or are based on maximum a posteriori estimates. These approaches, how...
Autores principales: | Maier, Corinna, Hartung, Niklas, Kloft, Charlotte, Huisinga, Wilhelm, de Wiljes, Jana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7965840/ https://www.ncbi.nlm.nih.gov/pubmed/33470053 http://dx.doi.org/10.1002/psp4.12588 |
Ejemplares similares
-
Bayesian Data Assimilation to Support Informed Decision Making in Individualized Chemotherapy
por: Maier, Corinna, et al.
Publicado: (2020) -
A continued learning approach for model‐informed precision dosing: Updating models in clinical practice
por: Maier, Corinna, et al.
Publicado: (2021) -
Towards Model-Informed Precision Dosing of Voriconazole: Challenging Published Voriconazole Nonlinear Mixed-Effects Models with Real-World Clinical Data
por: Kluwe, Franziska, et al.
Publicado: (2023) -
Reinforcement Learning for Precision Oncology
por: Eckardt, Jan-Niklas, et al.
Publicado: (2021) -
Role of renal function in risk assessment of target non-attainment after standard dosing of meropenem in critically ill patients: a prospective observational study
por: Ehmann, Lisa, et al.
Publicado: (2017)