Cargando…
Deep Learning for Diagnosis and Classification of Obstructive Sleep Apnea: A Nasal Airflow-Based Multi-Resolution Residual Network
PURPOSE: This study evaluated a novel approach for diagnosis and classification of obstructive sleep apnea (OSA), called Obstructive Sleep Apnea Smart System (OSASS), using residual networks and single-channel nasal pressure airflow signals. METHODS: Data were collected from the sleep center of the...
Autores principales: | Yue, Huijun, Lin, Yu, Wu, Yitao, Wang, Yongquan, Li, Yun, Guo, Xueqin, Huang, Ying, Wen, Weiping, Zhao, Gansen, Pang, Xiongwen, Lei, Wenbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7966385/ https://www.ncbi.nlm.nih.gov/pubmed/33737850 http://dx.doi.org/10.2147/NSS.S297856 |
Ejemplares similares
-
Airflow dynamics in obese minipigs with obstructive sleep apnea
por: Liu, Zi-Jun, et al.
Publicado: (2021) -
Wavelet Analysis of Overnight Airflow to Detect Obstructive Sleep Apnea in Children
por: Barroso-García, Verónica, et al.
Publicado: (2021) -
Misleading sleep-diagnostic results in a patient with variable nasal airflow obstruction()
por: Spurling, K.J., et al.
Publicado: (2015) -
Nasal Involvement in Obstructive Sleep Apnea Syndrome
por: Michels, Daniel de Sousa, et al.
Publicado: (2014) -
Internal nasal dilator in patients with obstructive sleep apnea
por: Matteo, Gelardi, et al.
Publicado: (2019)