Cargando…
Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster Roots
Nitrogen (N) and phosphorus (P) are two major plant nutrients, and their deficiencies often limit plant growth and crop yield. The uptakes of N or P affect each other, and consequently, understanding N–P interactions is fundamental. Their signaling mechanisms have been studied mostly separately, and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7966414/ https://www.ncbi.nlm.nih.gov/pubmed/33747024 http://dx.doi.org/10.3389/fpls.2021.644218 |
_version_ | 1783665697839120384 |
---|---|
author | Pueyo, José J. Quiñones, Miguel A. Coba de la Peña, Teodoro Fedorova, Elena E. Lucas, M. Mercedes |
author_facet | Pueyo, José J. Quiñones, Miguel A. Coba de la Peña, Teodoro Fedorova, Elena E. Lucas, M. Mercedes |
author_sort | Pueyo, José J. |
collection | PubMed |
description | Nitrogen (N) and phosphorus (P) are two major plant nutrients, and their deficiencies often limit plant growth and crop yield. The uptakes of N or P affect each other, and consequently, understanding N–P interactions is fundamental. Their signaling mechanisms have been studied mostly separately, and integrating N–P interactive regulation is becoming the aim of some recent works. Lupins are singular plants, as, under N and P deficiencies, they are capable to develop new organs, the N(2)-fixing symbiotic nodules, and some species can also transform their root architecture to form cluster roots, hundreds of short rootlets that alter their metabolism to induce a high-affinity P transport system and enhance synthesis and secretion of organic acids, flavonoids, proteases, acid phosphatases, and proton efflux. These modifications lead to mobilization in the soil of, otherwise unavailable, P. White lupin (Lupinus albus) represents a model plant to study cluster roots and for understanding plant acclimation to nutrient deficiency. It tolerates simultaneous P and N deficiencies and also enhances uptake of additional nutrients. Here, we present the structural and functional modifications that occur in conditions of P and N deficiencies and lead to the organogenesis and altered metabolism of nodules and cluster roots. Some known N and P signaling mechanisms include different factors, including phytohormones and miRNAs. The combination of the individual N and P mechanisms uncovers interactive regulation pathways that concur in nodules and cluster roots. L. albus interlinks N and P recycling processes both in the plant itself and in nature. |
format | Online Article Text |
id | pubmed-7966414 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79664142021-03-18 Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster Roots Pueyo, José J. Quiñones, Miguel A. Coba de la Peña, Teodoro Fedorova, Elena E. Lucas, M. Mercedes Front Plant Sci Plant Science Nitrogen (N) and phosphorus (P) are two major plant nutrients, and their deficiencies often limit plant growth and crop yield. The uptakes of N or P affect each other, and consequently, understanding N–P interactions is fundamental. Their signaling mechanisms have been studied mostly separately, and integrating N–P interactive regulation is becoming the aim of some recent works. Lupins are singular plants, as, under N and P deficiencies, they are capable to develop new organs, the N(2)-fixing symbiotic nodules, and some species can also transform their root architecture to form cluster roots, hundreds of short rootlets that alter their metabolism to induce a high-affinity P transport system and enhance synthesis and secretion of organic acids, flavonoids, proteases, acid phosphatases, and proton efflux. These modifications lead to mobilization in the soil of, otherwise unavailable, P. White lupin (Lupinus albus) represents a model plant to study cluster roots and for understanding plant acclimation to nutrient deficiency. It tolerates simultaneous P and N deficiencies and also enhances uptake of additional nutrients. Here, we present the structural and functional modifications that occur in conditions of P and N deficiencies and lead to the organogenesis and altered metabolism of nodules and cluster roots. Some known N and P signaling mechanisms include different factors, including phytohormones and miRNAs. The combination of the individual N and P mechanisms uncovers interactive regulation pathways that concur in nodules and cluster roots. L. albus interlinks N and P recycling processes both in the plant itself and in nature. Frontiers Media S.A. 2021-03-03 /pmc/articles/PMC7966414/ /pubmed/33747024 http://dx.doi.org/10.3389/fpls.2021.644218 Text en Copyright © 2021 Pueyo, Quiñones, Coba de la Peña, Fedorova and Lucas. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Pueyo, José J. Quiñones, Miguel A. Coba de la Peña, Teodoro Fedorova, Elena E. Lucas, M. Mercedes Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster Roots |
title | Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster Roots |
title_full | Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster Roots |
title_fullStr | Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster Roots |
title_full_unstemmed | Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster Roots |
title_short | Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster Roots |
title_sort | nitrogen and phosphorus interplay in lupin root nodules and cluster roots |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7966414/ https://www.ncbi.nlm.nih.gov/pubmed/33747024 http://dx.doi.org/10.3389/fpls.2021.644218 |
work_keys_str_mv | AT pueyojosej nitrogenandphosphorusinterplayinlupinrootnodulesandclusterroots AT quinonesmiguela nitrogenandphosphorusinterplayinlupinrootnodulesandclusterroots AT cobadelapenateodoro nitrogenandphosphorusinterplayinlupinrootnodulesandclusterroots AT fedorovaelenae nitrogenandphosphorusinterplayinlupinrootnodulesandclusterroots AT lucasmmercedes nitrogenandphosphorusinterplayinlupinrootnodulesandclusterroots |