Cargando…

Evidence for divergence of DNA methylation maintenance and a conserved inhibitory mechanism from DNA demethylation in chickens and mammals

BACKGROUND: DNA methylation is a significant epigenetic modification that is evolutionarily conserved in various species and often serves as a repressive mark for transcription. DNA methylation levels and patterns are regulated by a balance of opposing enzyme functions, DNA methyltransferases, DNMT1...

Descripción completa

Detalles Bibliográficos
Autores principales: Tada, Masako, Hayashi, Ayaka, Asano, Yumi, Kubiura-Ichimaru, Musashi, Ito, Takamasa, Yoshii, Miho, Kimura, Hiroshi, Matsuda, Yoichi, Oshimura, Mitsuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Singapore 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7966644/
https://www.ncbi.nlm.nih.gov/pubmed/33555502
http://dx.doi.org/10.1007/s13258-021-01046-7
Descripción
Sumario:BACKGROUND: DNA methylation is a significant epigenetic modification that is evolutionarily conserved in various species and often serves as a repressive mark for transcription. DNA methylation levels and patterns are regulated by a balance of opposing enzyme functions, DNA methyltransferases, DNMT1/3A/3B and methylcytosine dioxygenases, TET1/2/3. In mice, the TET enzyme converts DNA cytosine methylation (5mC) to 5-hydroxymethylcytosine (5hmC) at the beginning of fertilisation and gastrulation and initiates a global loss of 5mC, while the 5mC level is increased on the onset of cell differentiation during early embryonic development. OBJECTIVE: Global loss and gain of DNA methylation may be differently regulated in diverged species. METHODS: Chicken B-cell lymphoma DT40 cells were used as an avian model to compare differences in the overall regulation of DNA modification with mammals. RESULTS: We found that DNA methylation is maintained at high levels in DT40 cells through compact chromatin formation, which inhibits TET-mediated demethylation. Human and mouse chromosomes introduced into DT40 cells by cell fusion lost the majority of 5mC, except for human subtelomeric repeats. CONCLUSION: Our attempt to elucidate the differences in the epigenetic regulatory mechanisms between birds and mammals explored the evidence that they share a common chromatin-based regulation of TET–DNA access, while chicken DNMT1 is involved in different target sequence recognition systems, suggesting that factors inducing DNMT–DNA association have already diverged.