Cargando…
Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis
BACKGROUND: Multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS), can be suppressed in its early stages but eventually becomes clinically progressive and unresponsive to therapy. Here, we investigate whether the therapeutic resistance of progressive MS can be attributed...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7966680/ https://www.ncbi.nlm.nih.gov/pubmed/33748804 http://dx.doi.org/10.1016/j.medj.2021.01.006 |
_version_ | 1783665714852265984 |
---|---|
author | Kaufmann, Max Evans, Hayley Schaupp, Anna-Lena Engler, Jan Broder Kaur, Gurman Willing, Anne Kursawe, Nina Schubert, Charlotte Attfield, Kathrine E. Fugger, Lars Friese, Manuel A. |
author_facet | Kaufmann, Max Evans, Hayley Schaupp, Anna-Lena Engler, Jan Broder Kaur, Gurman Willing, Anne Kursawe, Nina Schubert, Charlotte Attfield, Kathrine E. Fugger, Lars Friese, Manuel A. |
author_sort | Kaufmann, Max |
collection | PubMed |
description | BACKGROUND: Multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS), can be suppressed in its early stages but eventually becomes clinically progressive and unresponsive to therapy. Here, we investigate whether the therapeutic resistance of progressive MS can be attributed to chronic immune cell accumulation behind the blood-brain barrier (BBB). METHODS: We systematically track CNS-homing immune cells in the peripheral blood of 31 MS patients and 31 matched healthy individuals in an integrated analysis of 497,705 single-cell transcriptomes and 355,433 surface protein profiles from 71 samples. Through spatial RNA sequencing, we localize these cells in post mortem brain tissue of 6 progressive MS patients contrasted against 4 control brains (20 samples, 85,000 spot transcriptomes). FINDINGS: We identify a specific pathogenic CD161+/lymphotoxin beta (LTB)+ T cell population that resides in brains of progressive MS patients. Intriguingly, our data suggest that the colonization of the CNS by these T cells may begin earlier in the disease course, as they can be mobilized to the blood by usage of the integrin-blocking antibody natalizumab in relapsing-remitting MS patients. CONCLUSIONS: As a consequence, we lay the groundwork for a therapeutic strategy to deplete CNS-homing T cells before they can fuel treatment-resistant progression. FUNDING: This study was supported by funding from the University Medical Center Hamburg-Eppendorf, the Stifterverband für die Deutsche Wissenschaft, the OAK Foundation, Medical Research Council UK, and Wellcome. |
format | Online Article Text |
id | pubmed-7966680 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-79666802021-03-19 Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis Kaufmann, Max Evans, Hayley Schaupp, Anna-Lena Engler, Jan Broder Kaur, Gurman Willing, Anne Kursawe, Nina Schubert, Charlotte Attfield, Kathrine E. Fugger, Lars Friese, Manuel A. Med (N Y) Clinical and Translational Article BACKGROUND: Multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS), can be suppressed in its early stages but eventually becomes clinically progressive and unresponsive to therapy. Here, we investigate whether the therapeutic resistance of progressive MS can be attributed to chronic immune cell accumulation behind the blood-brain barrier (BBB). METHODS: We systematically track CNS-homing immune cells in the peripheral blood of 31 MS patients and 31 matched healthy individuals in an integrated analysis of 497,705 single-cell transcriptomes and 355,433 surface protein profiles from 71 samples. Through spatial RNA sequencing, we localize these cells in post mortem brain tissue of 6 progressive MS patients contrasted against 4 control brains (20 samples, 85,000 spot transcriptomes). FINDINGS: We identify a specific pathogenic CD161+/lymphotoxin beta (LTB)+ T cell population that resides in brains of progressive MS patients. Intriguingly, our data suggest that the colonization of the CNS by these T cells may begin earlier in the disease course, as they can be mobilized to the blood by usage of the integrin-blocking antibody natalizumab in relapsing-remitting MS patients. CONCLUSIONS: As a consequence, we lay the groundwork for a therapeutic strategy to deplete CNS-homing T cells before they can fuel treatment-resistant progression. FUNDING: This study was supported by funding from the University Medical Center Hamburg-Eppendorf, the Stifterverband für die Deutsche Wissenschaft, the OAK Foundation, Medical Research Council UK, and Wellcome. Cell Press 2021-03-12 /pmc/articles/PMC7966680/ /pubmed/33748804 http://dx.doi.org/10.1016/j.medj.2021.01.006 Text en © 2021 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Clinical and Translational Article Kaufmann, Max Evans, Hayley Schaupp, Anna-Lena Engler, Jan Broder Kaur, Gurman Willing, Anne Kursawe, Nina Schubert, Charlotte Attfield, Kathrine E. Fugger, Lars Friese, Manuel A. Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis |
title | Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis |
title_full | Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis |
title_fullStr | Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis |
title_full_unstemmed | Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis |
title_short | Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis |
title_sort | identifying cns-colonizing t cells as potential therapeutic targets to prevent progression of multiple sclerosis |
topic | Clinical and Translational Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7966680/ https://www.ncbi.nlm.nih.gov/pubmed/33748804 http://dx.doi.org/10.1016/j.medj.2021.01.006 |
work_keys_str_mv | AT kaufmannmax identifyingcnscolonizingtcellsaspotentialtherapeutictargetstopreventprogressionofmultiplesclerosis AT evanshayley identifyingcnscolonizingtcellsaspotentialtherapeutictargetstopreventprogressionofmultiplesclerosis AT schauppannalena identifyingcnscolonizingtcellsaspotentialtherapeutictargetstopreventprogressionofmultiplesclerosis AT englerjanbroder identifyingcnscolonizingtcellsaspotentialtherapeutictargetstopreventprogressionofmultiplesclerosis AT kaurgurman identifyingcnscolonizingtcellsaspotentialtherapeutictargetstopreventprogressionofmultiplesclerosis AT willinganne identifyingcnscolonizingtcellsaspotentialtherapeutictargetstopreventprogressionofmultiplesclerosis AT kursawenina identifyingcnscolonizingtcellsaspotentialtherapeutictargetstopreventprogressionofmultiplesclerosis AT schubertcharlotte identifyingcnscolonizingtcellsaspotentialtherapeutictargetstopreventprogressionofmultiplesclerosis AT attfieldkathrinee identifyingcnscolonizingtcellsaspotentialtherapeutictargetstopreventprogressionofmultiplesclerosis AT fuggerlars identifyingcnscolonizingtcellsaspotentialtherapeutictargetstopreventprogressionofmultiplesclerosis AT friesemanuela identifyingcnscolonizingtcellsaspotentialtherapeutictargetstopreventprogressionofmultiplesclerosis |