Cargando…
Programmable site-selective labeling of oligonucleotides based on carbene catalysis
Site-selective modification of oligonucleotides serves as an indispensable tool in many fields of research including research of fundamental biological processes, biotechnology, and nanotechnology. Here we report chemo- and regioselective modification of oligonucleotides based on rhodium(I)-carbene...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7966772/ https://www.ncbi.nlm.nih.gov/pubmed/33727561 http://dx.doi.org/10.1038/s41467-021-21839-4 |
Sumario: | Site-selective modification of oligonucleotides serves as an indispensable tool in many fields of research including research of fundamental biological processes, biotechnology, and nanotechnology. Here we report chemo- and regioselective modification of oligonucleotides based on rhodium(I)-carbene catalysis in a programmable fashion. Extensive screening identifies a rhodium(I)-catalyst that displays robust chemoselectivity toward base-unpaired guanosines in single and double-strand oligonucleotides with structurally complex secondary structures. Moreover, high regioselectivity among multiple guanosines in a substrate is achieved by introducing guanosine-bulge loops in a duplex. This approach allows the introduction of multiple unique functional handles in an iterative fashion, the utility of which is exemplified in DNA-protein cross-linking in cell lysates. |
---|