Cargando…
Rational strain engineering of single-atom ruthenium on nanoporous MoS(2) for highly efficient hydrogen evolution
Maximizing the catalytic activity of single-atom catalysts is vital for the application of single-atom catalysts in industrial water-alkali electrolyzers, yet the modulation of the catalytic properties of single-atom catalysts remains challenging. Here, we construct strain-tunable sulphur vacancies...
Autores principales: | Jiang, Kang, Luo, Min, Liu, Zhixiao, Peng, Ming, Chen, Dechao, Lu, Ying-Rui, Chan, Ting-Shan, de Groot, Frank M. F., Tan, Yongwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7966786/ https://www.ncbi.nlm.nih.gov/pubmed/33727537 http://dx.doi.org/10.1038/s41467-021-21956-0 |
Ejemplares similares
-
Engineering MoS(2) Basal Planes for Hydrogen Evolution via Synergistic Ruthenium Doping and Nanocarbon Hybridization
por: Zhang, Xing, et al.
Publicado: (2019) -
Defect and strain engineered MoS(2)/graphene catalyst for an enhanced hydrogen evolution reaction
por: Yang, Zhaoyuan, et al.
Publicado: (2023) -
Atomically engineering activation sites onto metallic 1T-MoS(2) catalysts for enhanced electrochemical hydrogen evolution
por: Huang, Yichao, et al.
Publicado: (2019) -
Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction
por: Jiang, Kang, et al.
Publicado: (2019) -
Publisher Correction: Atomically engineering activation sites onto metallic 1T-MoS(2) catalysts for enhanced electrochemical hydrogen evolution
por: Huang, Yichao, et al.
Publicado: (2020)