Cargando…
Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts
OBJECTIVE: Limited research exists in predicting first-time suicide attempts that account for two-thirds of suicide decedents. We aimed to predict first-time suicide attempts using a large data-driven approach that applies natural language processing (NLP) and machine learning (ML) to unstructured (...
Autores principales: | Tsui, Fuchiang R, Shi, Lingyun, Ruiz, Victor, Ryan, Neal D, Biernesser, Candice, Iyengar, Satish, Walsh, Colin G, Brent, David A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7966858/ https://www.ncbi.nlm.nih.gov/pubmed/33758800 http://dx.doi.org/10.1093/jamiaopen/ooab011 |
Ejemplares similares
-
An argument for reporting data standardization procedures in multi-site predictive modeling: case study on the impact of LOINC standardization on model performance
por: Barda, Amie J, et al.
Publicado: (2019) -
Improving ascertainment of suicidal ideation and suicide attempt with natural language processing
por: Bejan, Cosmin A., et al.
Publicado: (2022) -
Using statistical and machine learning to help institutions detect suspicious access to electronic health records
por: Boxwala, Aziz A, et al.
Publicado: (2011) -
Bias or biology? Importance of model interpretation in machine learning studies from electronic health records
por: Momenzadeh, Amanda, et al.
Publicado: (2022) -
Automated Monitoring of Suicidal Adolescents’ Digital Media Use: Qualitative Study Exploring Acceptability Within Clinical Care
por: Biernesser, Candice, et al.
Publicado: (2021)