Cargando…

Generation of Nanodroplet Reactors and Their Applications in In Situ Controllable Synthesis and Transportation of Ag Nanoparticles

Nanodroplets have been paid great attention as they are crucial for a wide range of physical, chemical, and biological applications. In this paper, monodispersed nanodroplets are prepared and their directed motions are realized through conducting the formation of nonuniform structures via altering t...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Guanhua, Wang, Haifei, Lu, Wensheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7967049/
https://www.ncbi.nlm.nih.gov/pubmed/33747722
http://dx.doi.org/10.1002/advs.202002672
_version_ 1783665790367563776
author Lin, Guanhua
Wang, Haifei
Lu, Wensheng
author_facet Lin, Guanhua
Wang, Haifei
Lu, Wensheng
author_sort Lin, Guanhua
collection PubMed
description Nanodroplets have been paid great attention as they are crucial for a wide range of physical, chemical, and biological applications. In this paper, monodispersed nanodroplets are prepared and their directed motions are realized through conducting the formation of nonuniform structures via altering the ionic distribution within; all these dynamics have been observed by using in situ transmission electron microscopy liquid cell technology. It has been found that their transformation from random motion to directed motion is reversible. Moreover, combining multiple directed motions enables long‐distance travel with directed motion taking up 95% of the total time. The results here also prove that aqueous nanodroplets can slide directionally on the hydrophilic surface like droplets sliding on hydrophobic surface. Furthermore, the authors successfully achieve the unidirectional transportation of in situ prepared Ag nanoparticles by using the nanodroplets as nanoreactor, carrier, and transporter. The size and number of as‐prepared Ag nanoparticles can be quantitatively controlled. In summary, this research provides a new strategy for real‐time generation and precise manipulation of aqueous nanodroplets. Together with the quantitatively controllable in situ synthesis of Ag nanoparticles within the nanodroplets, this work can prove their promising applications in many fields.
format Online
Article
Text
id pubmed-7967049
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-79670492021-03-19 Generation of Nanodroplet Reactors and Their Applications in In Situ Controllable Synthesis and Transportation of Ag Nanoparticles Lin, Guanhua Wang, Haifei Lu, Wensheng Adv Sci (Weinh) Full Papers Nanodroplets have been paid great attention as they are crucial for a wide range of physical, chemical, and biological applications. In this paper, monodispersed nanodroplets are prepared and their directed motions are realized through conducting the formation of nonuniform structures via altering the ionic distribution within; all these dynamics have been observed by using in situ transmission electron microscopy liquid cell technology. It has been found that their transformation from random motion to directed motion is reversible. Moreover, combining multiple directed motions enables long‐distance travel with directed motion taking up 95% of the total time. The results here also prove that aqueous nanodroplets can slide directionally on the hydrophilic surface like droplets sliding on hydrophobic surface. Furthermore, the authors successfully achieve the unidirectional transportation of in situ prepared Ag nanoparticles by using the nanodroplets as nanoreactor, carrier, and transporter. The size and number of as‐prepared Ag nanoparticles can be quantitatively controlled. In summary, this research provides a new strategy for real‐time generation and precise manipulation of aqueous nanodroplets. Together with the quantitatively controllable in situ synthesis of Ag nanoparticles within the nanodroplets, this work can prove their promising applications in many fields. John Wiley and Sons Inc. 2021-01-29 /pmc/articles/PMC7967049/ /pubmed/33747722 http://dx.doi.org/10.1002/advs.202002672 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Lin, Guanhua
Wang, Haifei
Lu, Wensheng
Generation of Nanodroplet Reactors and Their Applications in In Situ Controllable Synthesis and Transportation of Ag Nanoparticles
title Generation of Nanodroplet Reactors and Their Applications in In Situ Controllable Synthesis and Transportation of Ag Nanoparticles
title_full Generation of Nanodroplet Reactors and Their Applications in In Situ Controllable Synthesis and Transportation of Ag Nanoparticles
title_fullStr Generation of Nanodroplet Reactors and Their Applications in In Situ Controllable Synthesis and Transportation of Ag Nanoparticles
title_full_unstemmed Generation of Nanodroplet Reactors and Their Applications in In Situ Controllable Synthesis and Transportation of Ag Nanoparticles
title_short Generation of Nanodroplet Reactors and Their Applications in In Situ Controllable Synthesis and Transportation of Ag Nanoparticles
title_sort generation of nanodroplet reactors and their applications in in situ controllable synthesis and transportation of ag nanoparticles
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7967049/
https://www.ncbi.nlm.nih.gov/pubmed/33747722
http://dx.doi.org/10.1002/advs.202002672
work_keys_str_mv AT linguanhua generationofnanodropletreactorsandtheirapplicationsininsitucontrollablesynthesisandtransportationofagnanoparticles
AT wanghaifei generationofnanodropletreactorsandtheirapplicationsininsitucontrollablesynthesisandtransportationofagnanoparticles
AT luwensheng generationofnanodropletreactorsandtheirapplicationsininsitucontrollablesynthesisandtransportationofagnanoparticles