Cargando…
A Rest Quality Metric Using a Cluster-Based Analysis of Accelerometer Data and Correlation With Digital Medicine Ingestion Data: Algorithm Development
BACKGROUND: Adherence to medication regimens and patient rest are two important factors in the well-being of patients with serious mental illness. Both of these behaviors are traditionally difficult to record objectively in unsupervised populations. OBJECTIVE: A digital medicine system that provides...
Autores principales: | Heidary, Zahra, Cochran, Jeffrey M, Peters-Strickland, Timothy, Knights, Jonathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7967235/ https://www.ncbi.nlm.nih.gov/pubmed/33650981 http://dx.doi.org/10.2196/17993 |
Ejemplares similares
-
Evaluating digital medicine ingestion data from seriously mentally ill patients with a Bayesian Hybrid Model
por: Knights, Jonathan, et al.
Publicado: (2019) -
Characterization of activity behavior using a digital medicine system and comparison to medication ingestion in patients with serious mental illness
por: Cochran, Jeffrey M., et al.
Publicado: (2021) -
Detection of Behavioral Anomalies in Medication Adherence Patterns Among Patients With Serious Mental Illness Engaged With a Digital Medicine System
por: Knights, Jonathan, et al.
Publicado: (2020) -
A robustness metric for biological data clustering algorithms
por: Lu, Yuping, et al.
Publicado: (2019) -
Enhancing the value of accelerometer-assessed physical activity: meaningful visual comparisons of data-driven translational accelerometer metrics
por: Rowlands, Alex V., et al.
Publicado: (2019)