Cargando…
Predicting Survival in Veterans with Follicular Lymphoma Using Structured Electronic Health Record Information and Machine Learning
The most accurate prognostic approach for follicular lymphoma (FL), progression of disease at 24 months (POD24), requires two years’ observation after initiating first-line therapy (L1) to predict outcomes. We applied machine learning to structured electronic health record (EHR) data to predict indi...
Autores principales: | Li, Chunyang, Patil, Vikas, Rasmussen, Kelli M., Yong, Christina, Chien, Hsu-Chih, Morreall, Debbie, Humpherys, Jeffrey, Sauer, Brian C., Burningham, Zachary, Halwani, Ahmad S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7967359/ https://www.ncbi.nlm.nih.gov/pubmed/33799968 http://dx.doi.org/10.3390/ijerph18052679 |
Ejemplares similares
-
Maintenance rituximab in Veterans with follicular lymphoma
por: Halwani, Ahmad S., et al.
Publicado: (2020) -
Treatment Patterns and Outcomes in a Nationwide Cohort of Older and Younger Veterans with Waldenström Macroglobulinemia, 2006–2019
por: Chien, Hsu-Chih, et al.
Publicado: (2021) -
Integration of Patient-Reported Outcome Measures in the Electronic Health Record: The Veterans Affairs Experience
por: Friedman, Daphne R., et al.
Publicado: (2022) -
Survival Outcomes by Race and Ethnicity in Veterans With Nonmetastatic Castration-Resistant Prostate Cancer
por: Rasmussen, Kelli M., et al.
Publicado: (2023) -
Predicting Psychiatric Hospitalizations among Elderly Veterans with a History of Mental Health Disease
por: Burningham, Zachary, et al.
Publicado: (2018)