Cargando…
The human Y chromosome: the biological role of a “functional wasteland”
“Functional wasteland,” “Nonrecombining desert,” and “Gene-poor chromosome” are only some examples of the different definitions given to the Y chromosome in the last decade. In comparison to the other chromosomes, the Y is poor in genes, being more than 50% of its sequence composed of repeated eleme...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2001
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC79676/ https://www.ncbi.nlm.nih.gov/pubmed/12488622 http://dx.doi.org/10.1155/S1110724301000080 |
Sumario: | “Functional wasteland,” “Nonrecombining desert,” and “Gene-poor chromosome” are only some examples of the different definitions given to the Y chromosome in the last decade. In comparison to the other chromosomes, the Y is poor in genes, being more than 50% of its sequence composed of repeated elements. Moreover, the Y genes are in continuous decay probably due to the lack of recombination of this chromosome. But the human Y chromosome, at the same time, plays a central role in human biology. The presence or absence of this chromosome determines gonadal sex. Thus, mammalian embryos with a Y chromosome develop testes, while those without it develop ovaries (Polani [1]). What is responsible for the male phenotype is the testis-determining SRY gene (Sinclair [2]) which remains the most distinguishing characteristic of this chromosome. In addition to SRY, the presence of other genes with important functions has been reported, including a region associated to Turner estigmata, a gene related to the development of gonadoblastoma and, most important, genes related to germ cell development and maintenance and then, related with male fertility (Lahn and Page [3]). This paper reviews the structure and the biological functions of this peculiar chromosome. |
---|