Cargando…
Effectiveness of SARS-CoV-2 Decontamination and Containment in a COVID-19 ICU
Background: Health care systems in the United States are continuously expanding and contracting spaces to treat patients with coronavirus disease 2019 (COVID-19) in intensive care units (ICUs). As a result, hospitals must effectively decontaminate and contain severe acute respiratory syndrome corona...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7967612/ https://www.ncbi.nlm.nih.gov/pubmed/33802332 http://dx.doi.org/10.3390/ijerph18052479 |
Sumario: | Background: Health care systems in the United States are continuously expanding and contracting spaces to treat patients with coronavirus disease 2019 (COVID-19) in intensive care units (ICUs). As a result, hospitals must effectively decontaminate and contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in constructed and deconstructed ICUs that care for patients with COVID-19. We assessed decontamination of a COVID-19 ICU and examined the containment efficacy of combined contact and droplet precautions in creating and maintaining a SARS-CoV-2–negative ICU “antechamber”. Methods: To examine the efficacy of chemical decontamination, we used high-density, semi-quantitative environmental sampling to detect SARS-CoV-2 on surfaces in a COVID-19 ICU and COVID-19 ICU antechamber. Quantitative real-time polymerase chain reaction was used to measure viral RNA on surfaces. Viral location mapping revealed the distribution of viral RNA in the COVID-19 ICU and COVID-19 ICU antechamber. Results were further assessed using loop-mediated isothermal amplification. Results: We collected 224 surface samples pre-decontamination and 193 samples post-decontamination from a COVID-19 ICU and adjoining COVID-19 ICU antechamber. We found that 46% of antechamber objects were positive for SARS-CoV-2 pre-decontamination despite the construction of a swinging door barrier system, implementation of contact precautions, and installation of high-efficiency particulate air filters. The object positivity rate reduced to 32.1% and viral particle rate reduced by 95.4% following decontamination. Matched items had an average of 432.2 ± 2729 viral copies/cm(2) pre-decontamination and 19.2 ± 118 viral copies/cm(2) post-decontamination, demonstrating significantly reduced viral surface distribution (p < 0.0001). Conclusions: Environmental sampling is an effective method for evaluating decontamination protocols and validating measures used to contain SARS-CoV-2 viral particles. While chemical decontamination effectively removes detectable viral RNA from surfaces, our approach to droplet/contact containment with an antechamber was not highly effective. These data suggest that hospitals should plan for the potential of aerosolized virions when creating strategies to contain SARS-CoV-2. |
---|