Cargando…
Predicting the Severity of Parkinson’s Disease Dementia by Assessing the Neuropsychiatric Symptoms with an SVM Regression Model
In this study, we measured the convergence rate using the mean-squared error (MSE) of the standardized neuropsychological test to determine the severity of Parkinson’s disease dementia (PDD), which is based on support vector machine (SVM) regression (SVR) and present baseline data in order to develo...
Autor principal: | Byeon, Haewon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7967659/ https://www.ncbi.nlm.nih.gov/pubmed/33806474 http://dx.doi.org/10.3390/ijerph18052551 |
Ejemplares similares
-
Can the prediction model using regression with optimal scale improve the power to predict the Parkinson's dementia?
por: Byeon, Haewon
Publicado: (2022) -
Application of Machine Learning Technique to Distinguish Parkinson’s Disease Dementia and Alzheimer’s Dementia: Predictive Power of Parkinson’s Disease-Related Non-Motor Symptoms and Neuropsychological Profile
por: Byeon, Haewon
Publicado: (2020) -
Best early-onset Parkinson dementia predictor using ensemble learning among Parkinson's symptoms, rapid eye movement sleep disorder, and neuropsychological profile
por: Byeon, Haewon
Publicado: (2020) -
Neuropsychiatric symptoms and severity of dementia
por: Caldas, Gustavo Henrique de Oliveira, et al.
Publicado: (2013) -
Development of a depression in Parkinson's disease prediction model using machine learning
por: Byeon, Haewon
Publicado: (2020)