Cargando…
External validation of an opioid misuse machine learning classifier in hospitalized adult patients
BACKGROUND: Opioid misuse screening in hospitals is resource-intensive and rarely done. Many hospitalized patients are never offered opioid treatment. An automated approach leveraging routinely captured electronic health record (EHR) data may be easier for hospitals to institute. We previously deriv...
Autores principales: | Afshar, Majid, Sharma, Brihat, Bhalla, Sameer, Thompson, Hale M., Dligach, Dmitriy, Boley, Randy A., Kishen, Ekta, Simmons, Alan, Perticone, Kathryn, Karnik, Niranjan S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7967783/ https://www.ncbi.nlm.nih.gov/pubmed/33731210 http://dx.doi.org/10.1186/s13722-021-00229-7 |
Ejemplares similares
-
Bias and fairness assessment of a natural language processing opioid misuse classifier: detection and mitigation of electronic health record data disadvantages across racial subgroups
por: Thompson, Hale M, et al.
Publicado: (2021) -
External validation of a machine learning classifier to identify unhealthy alcohol use in hospitalized patients
por: Lin, Yiqi, et al.
Publicado: (2021) -
Publicly available machine learning models for identifying opioid misuse from the clinical notes of hospitalized patients
por: Sharma, Brihat, et al.
Publicado: (2020) -
Subtypes in patients with opioid misuse: A prognostic enrichment strategy using electronic health record data in hospitalized patients
por: Afshar, Majid, et al.
Publicado: (2019) -
Development and multimodal validation of a substance misuse algorithm for referral to treatment using artificial intelligence (SMART-AI): a retrospective deep learning study
por: Afshar, Majid, et al.
Publicado: (2022)