Cargando…

MicroRNA-26a inhibits cell proliferation and invasion by targeting FAM98A in breast cancer

MicroRNAs (miRNAs/miRs) play key roles in cancer progression. Extensive research has revealed that miR-26a is abnormally expressed and functions as a tumor suppressor in numerous types of cancer. Thus, the present study was undertaken to investigate the regulatory role and potential mechanism of act...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Tan, Wang, Ziming, Dong, Menghao, Wei, Jingjing, Pan, Yueyin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7967926/
https://www.ncbi.nlm.nih.gov/pubmed/33747224
http://dx.doi.org/10.3892/ol.2021.12628
Descripción
Sumario:MicroRNAs (miRNAs/miRs) play key roles in cancer progression. Extensive research has revealed that miR-26a is abnormally expressed and functions as a tumor suppressor in numerous types of cancer. Thus, the present study was undertaken to investigate the regulatory role and potential mechanism of action of miR-26a in breast cancer. Furthermore, the present study aimed to examine the alterations in miR-26a expression and its effects on human breast cancer cells. Reverse transcription-quantitative PCR was conducted to assess the differences in miR-26a expression between human breast cancer and normal breast specimens. A Cell Counting Kit-8 assay and cloning experiments were used to detect cell proliferation and clone formation. Wound healing and Transwell assays were performed to examine cell migration and invasion. A luciferase activity experiment was utilized to validate the association between miR-26a and family with sequence similarity 98 member A (FAM98A). Western blotting was conducted to detect the protein expression levels of FAM98A, sonic hedgehog signaling molecule (SHH), smoothened, frizzled class receptor (SMO) and GLI family zinc finger 1 (GLI1). The results indicated that miR-26a expression was decreased in breast carcinoma tissues and cell lines. Moreover, overexpression of miR-26a significantly suppressed cell proliferation, clone formation ability and metastasis, and it sensitized breast cancer cells to docetaxel. It was demonstrated that miR-26a directly targeted FAM98A, and that FAM98A, SHH, SMO and GLI1 expression levels were decreased in cells transfected with miR-26a mimics. Collectively, the results of the present study suggested that miR-26a negatively regulated the expression of FAM98A, indicating that it may play a key role in the suppression of breast carcinogenesis.