Cargando…

Ursodeoxycholic acid as a means of preventing atherosclerosis, steatosis and liver fibrosis in patients with nonalcoholic fatty liver disease

BACKGROUND: Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality in patients with nonalcoholic fatty liver disease (NAFLD). Weight loss is a key factor for successful NAFLD and CVD therapy. Ursodeoxycholic acid (UDCA), which is one of the first-line therapeutic agents for...

Descripción completa

Detalles Bibliográficos
Autores principales: Nadinskaia, Maria, Maevskaya, Marina, Ivashkin, Vladimir, Kodzoeva, Khava, Pirogova, Irina, Chesnokov, Evgeny, Nersesov, Alexander, Kaibullayeva, Jamilya, Konysbekova, Akzhan, Raissova, Aigul, Khamrabaeva, Feruza, Zueva, Elena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Baishideng Publishing Group Inc 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968130/
https://www.ncbi.nlm.nih.gov/pubmed/33776366
http://dx.doi.org/10.3748/wjg.v27.i10.959
Descripción
Sumario:BACKGROUND: Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality in patients with nonalcoholic fatty liver disease (NAFLD). Weight loss is a key factor for successful NAFLD and CVD therapy. Ursodeoxycholic acid (UDCA), which is one of the first-line therapeutic agents for treatment of NAFLD, is reported to have a beneficial effect on dyslipidemia and ASCVD risk because of antioxidant properties. AIM: To evaluate the effects of 6 mo of UDCA treatment on hepatic function tests, lipid profile, hepatic steatosis and fibrosis, atherogenesis, and ASCVD risk in men and women with NAFLD, as well as to assess the impact of > 5% weight reduction on these parameters. METHODS: An open-label, multicenter, international noncomparative trial was carried out at primary health care settings and included 174 patients with ultrasound-diagnosed NAFLD who received 15 mg/kg/d UDCA for 6 mo and were prescribed lifestyle modification with diet and exercise. The efficacy criteria were liver enzymes, lipid profile, fatty liver index (FLI), noninvasive liver fibrosis tests (nonalcoholic fatty liver disease fibrosis score and liver fibrosis index), carotid intima-media thickness (CIMT), and ASCVD risk score. To test statistical hypotheses, the Wilcoxon test, paired t-test, Fisher’s exact test, and Pearson's chi-squared test were used. RESULTS: The alanine aminotransferase (ALT) level changed by -14.1 U/L (-31.0; -5.3) from baseline to 3 mo and by -6.5 U/L (-14.0; 0.1) from 3 to 6 mo. The magnitude of ALT, aspartate transaminase, and glutamyltransferase decrease was greater during the first 3 mo of treatment compared to the subsequent 3 mo (P < 0.001, P < 0.01, P < 0.001, respectively). At 6 mo, in the total sample, we observed a statistically significant decrease in body weight and levels of FLI: 84.9 ± 10.4 vs 72.3 ± 17.6, P < 0.001, total cholesterol: 6.03 ± 1.36 vs 5.76 ± 1.21, Р < 0.001, low-density lipoprotein: 3.86 ± 1.01 vs 3.66 ± 0.91, Р < 0.001, and triglyceride: 3.18 (2.00; 4.29) vs 2.04 (1.40; 3.16), Р < 0.001. No effect on nonalcoholic fatty liver disease fibrosis score or liver fibrosis index was found. The CIMT decreased significantly in the total sample (0.985 ± 0.243 vs 0.968 ± 0.237, P = 0.013), whereas the high-density lipoprotein (Р = 0.036) and 10-year ASCVD risk (Р = 0.003) improved significantly only in women. Fifty-four patients (31%) achieved > 5% weight loss. At the end of the study, the FLI decreased significantly in patients with (88.3 ± 10.2 vs 71.4 ± 19.6, P < 0.001) and without > 5% weight loss (83.5 ± 10.3 vs 72.8 ± 16.7, P < 0.001). The changes in ALT, aspartate transaminase, glutamyltransferase, total cholesterol, and low-density lipoprotein levels were similar between the subgroups. CONCLUSION: UDCA normalizes liver enzymes greatly within the first 3 mo of treatment, improves lipid profile and hepatic steatosis independent of weight loss, and has a positive effect on CIMT in the total sample and 10-year ASCVD risk in women after 6 mo of treatment.