Cargando…
Inferring phenomenological models of first passage processes
Biochemical processes in cells are governed by complex networks of many chemical species interacting stochastically in diverse ways and on different time scales. Constructing microscopically accurate models of such networks is often infeasible. Instead, here we propose a systematic framework for bui...
Autores principales: | Rivera, Catalina, Hofmann, David, Nemenman, Ilya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968746/ https://www.ncbi.nlm.nih.gov/pubmed/33667218 http://dx.doi.org/10.1371/journal.pcbi.1008740 |
Ejemplares similares
-
Automated adaptive inference of phenomenological dynamical models
por: Daniels, Bryan C., et al.
Publicado: (2015) -
Efficient Inference of Parsimonious Phenomenological Models of Cellular Dynamics Using S-Systems and Alternating Regression
por: Daniels, Bryan C., et al.
Publicado: (2015) -
From Generative Models to Generative Passages: A Computational Approach to (Neuro) Phenomenology
por: Ramstead, Maxwell J. D., et al.
Publicado: (2022) -
Optimal Signal Processing in Small Stochastic Biochemical Networks
por: Ziv, Etay, et al.
Publicado: (2007) -
Bacterial Secretion and the Role of Diffusive and Subdiffusive First Passage Processes
por: Marten, Frank, et al.
Publicado: (2012)