Cargando…
Deep learning velocity signals allow quantifying turbulence intensity
Turbulence, the ubiquitous and chaotic state of fluid motions, is characterized by strong and statistically nontrivial fluctuations of the velocity field, and it can be quantitatively described only in terms of statistical averages. Strong nonstationarities impede statistical convergence, precluding...
Autores principales: | Corbetta, Alessandro, Menkovski, Vlado, Benzi, Roberto, Toschi, Federico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968843/ https://www.ncbi.nlm.nih.gov/pubmed/33731341 http://dx.doi.org/10.1126/sciadv.aba7281 |
Ejemplares similares
-
Pedestrian orientation dynamics from high-fidelity measurements
por: Willems, Joris, et al.
Publicado: (2020) -
5th European Turbulence Conference
por: Benzi, Roberto
Publicado: (1995) -
NATO Advanced Study Institute on Turbulence in Spatially-extended Systems
por: Basdevant, C, et al.
Publicado: (1993) -
Toward learning Lattice Boltzmann collision operators
por: Corbetta, Alessandro, et al.
Publicado: (2023) -
Deep learning methods allow fully automated segmentation of metacarpal bones to quantify volumetric bone mineral density
por: Folle, Lukas, et al.
Publicado: (2021)