Cargando…
Machine learning based approach to pH imaging and classification of single cancer cells
The ability to identify different cell populations in a noninvasive manner and without the use of fluorescence labeling remains an important goal in biomedical research. Various techniques have been developed over the last decade, which mainly rely on fluorescent probes or nanoparticles. On the othe...
Autores principales: | Belotti, Y., Jokhun, D. S., Ponnambalam, J. S., Valerio, V. L. M., Lim, C. T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIP Publishing LLC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7968934/ https://www.ncbi.nlm.nih.gov/pubmed/33758789 http://dx.doi.org/10.1063/5.0031615 |
Ejemplares similares
-
Single-cell pH imaging and detection for pH profiling and label-free rapid identification of cancer-cells
por: Hou, Hui, et al.
Publicado: (2017) -
Machine Learning Predictions of pH in the Glacial Aquifer System, Northern USA
por: Stackelberg, Paul E., et al.
Publicado: (2020) -
A General
MRI-CEST Ratiometric Approach for pH Imaging:
Demonstration of in Vivo pH Mapping with Iobitridol
por: Longo, Dario L., et al.
Publicado: (2014) -
Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and pH Using vis-NIR Spectra
por: Yang, Meihua, et al.
Publicado: (2019) -
Extracellular and Luminal pH Regulation by Vacuolar H(+)-ATPase Isoform Expression and Targeting to the Plasma Membrane and Endosomes
por: Smith, Gina A., et al.
Publicado: (2016)