Cargando…

Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein

Optogenetic control of CRISPR–Cas9 systems has significantly improved our ability to perform genome perturbations in living cells with high precision in time and space. As new Cas orthologues with advantageous properties are rapidly being discovered and engineered, the need for straightforward strat...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoffmann, Mareike D, Mathony, Jan, Upmeier zu Belzen, Julius, Harteveld, Zander, Aschenbrenner, Sabine, Stengl, Christina, Grimm, Dirk, Correia, Bruno E, Eils, Roland, Niopek, Dominik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969004/
https://www.ncbi.nlm.nih.gov/pubmed/33330940
http://dx.doi.org/10.1093/nar/gkaa1198
_version_ 1783666154583097344
author Hoffmann, Mareike D
Mathony, Jan
Upmeier zu Belzen, Julius
Harteveld, Zander
Aschenbrenner, Sabine
Stengl, Christina
Grimm, Dirk
Correia, Bruno E
Eils, Roland
Niopek, Dominik
author_facet Hoffmann, Mareike D
Mathony, Jan
Upmeier zu Belzen, Julius
Harteveld, Zander
Aschenbrenner, Sabine
Stengl, Christina
Grimm, Dirk
Correia, Bruno E
Eils, Roland
Niopek, Dominik
author_sort Hoffmann, Mareike D
collection PubMed
description Optogenetic control of CRISPR–Cas9 systems has significantly improved our ability to perform genome perturbations in living cells with high precision in time and space. As new Cas orthologues with advantageous properties are rapidly being discovered and engineered, the need for straightforward strategies to control their activity via exogenous stimuli persists. The Cas9 from Neisseria meningitidis (Nme) is a particularly small and target-specific Cas9 orthologue, and thus of high interest for in vivo genome editing applications. Here, we report the first optogenetic tool to control NmeCas9 activity in mammalian cells via an engineered, light-dependent anti-CRISPR (Acr) protein. Building on our previous Acr engineering work, we created hybrids between the NmeCas9 inhibitor AcrIIC3 and the LOV2 blue light sensory domain from Avena sativa. Two AcrIIC3-LOV2 hybrids from our collection potently blocked NmeCas9 activity in the dark, while permitting robust genome editing at various endogenous loci upon blue light irradiation. Structural analysis revealed that, within these hybrids, the LOV2 domain is located in striking proximity to the Cas9 binding surface. Together, our work demonstrates optogenetic regulation of a type II-C CRISPR effector and might suggest a new route for the design of optogenetic Acrs.
format Online
Article
Text
id pubmed-7969004
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-79690042021-03-22 Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein Hoffmann, Mareike D Mathony, Jan Upmeier zu Belzen, Julius Harteveld, Zander Aschenbrenner, Sabine Stengl, Christina Grimm, Dirk Correia, Bruno E Eils, Roland Niopek, Dominik Nucleic Acids Res Methods Online Optogenetic control of CRISPR–Cas9 systems has significantly improved our ability to perform genome perturbations in living cells with high precision in time and space. As new Cas orthologues with advantageous properties are rapidly being discovered and engineered, the need for straightforward strategies to control their activity via exogenous stimuli persists. The Cas9 from Neisseria meningitidis (Nme) is a particularly small and target-specific Cas9 orthologue, and thus of high interest for in vivo genome editing applications. Here, we report the first optogenetic tool to control NmeCas9 activity in mammalian cells via an engineered, light-dependent anti-CRISPR (Acr) protein. Building on our previous Acr engineering work, we created hybrids between the NmeCas9 inhibitor AcrIIC3 and the LOV2 blue light sensory domain from Avena sativa. Two AcrIIC3-LOV2 hybrids from our collection potently blocked NmeCas9 activity in the dark, while permitting robust genome editing at various endogenous loci upon blue light irradiation. Structural analysis revealed that, within these hybrids, the LOV2 domain is located in striking proximity to the Cas9 binding surface. Together, our work demonstrates optogenetic regulation of a type II-C CRISPR effector and might suggest a new route for the design of optogenetic Acrs. Oxford University Press 2020-12-16 /pmc/articles/PMC7969004/ /pubmed/33330940 http://dx.doi.org/10.1093/nar/gkaa1198 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methods Online
Hoffmann, Mareike D
Mathony, Jan
Upmeier zu Belzen, Julius
Harteveld, Zander
Aschenbrenner, Sabine
Stengl, Christina
Grimm, Dirk
Correia, Bruno E
Eils, Roland
Niopek, Dominik
Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein
title Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein
title_full Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein
title_fullStr Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein
title_full_unstemmed Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein
title_short Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein
title_sort optogenetic control of neisseria meningitidis cas9 genome editing using an engineered, light-switchable anti-crispr protein
topic Methods Online
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969004/
https://www.ncbi.nlm.nih.gov/pubmed/33330940
http://dx.doi.org/10.1093/nar/gkaa1198
work_keys_str_mv AT hoffmannmareiked optogeneticcontrolofneisseriameningitidiscas9genomeeditingusinganengineeredlightswitchableanticrisprprotein
AT mathonyjan optogeneticcontrolofneisseriameningitidiscas9genomeeditingusinganengineeredlightswitchableanticrisprprotein
AT upmeierzubelzenjulius optogeneticcontrolofneisseriameningitidiscas9genomeeditingusinganengineeredlightswitchableanticrisprprotein
AT harteveldzander optogeneticcontrolofneisseriameningitidiscas9genomeeditingusinganengineeredlightswitchableanticrisprprotein
AT aschenbrennersabine optogeneticcontrolofneisseriameningitidiscas9genomeeditingusinganengineeredlightswitchableanticrisprprotein
AT stenglchristina optogeneticcontrolofneisseriameningitidiscas9genomeeditingusinganengineeredlightswitchableanticrisprprotein
AT grimmdirk optogeneticcontrolofneisseriameningitidiscas9genomeeditingusinganengineeredlightswitchableanticrisprprotein
AT correiabrunoe optogeneticcontrolofneisseriameningitidiscas9genomeeditingusinganengineeredlightswitchableanticrisprprotein
AT eilsroland optogeneticcontrolofneisseriameningitidiscas9genomeeditingusinganengineeredlightswitchableanticrisprprotein
AT niopekdominik optogeneticcontrolofneisseriameningitidiscas9genomeeditingusinganengineeredlightswitchableanticrisprprotein