Cargando…

Optimum Feature Selection with Particle Swarm Optimization to Face Recognition System Using Gabor Wavelet Transform and Deep Learning

In this study, Gabor wavelet transform on the strength of deep learning which is a new approach for the symmetry face database is presented. A proposed face recognition system was developed to be used for different purposes. We used Gabor wavelet transform for feature extraction of symmetry face tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmed, Sulayman, Frikha, Mondher, Hussein, Taha Darwassh Hanawy, Rahebi, Javad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969091/
https://www.ncbi.nlm.nih.gov/pubmed/33778071
http://dx.doi.org/10.1155/2021/6621540
Descripción
Sumario:In this study, Gabor wavelet transform on the strength of deep learning which is a new approach for the symmetry face database is presented. A proposed face recognition system was developed to be used for different purposes. We used Gabor wavelet transform for feature extraction of symmetry face training data, and then, we used the deep learning method for recognition. We implemented and evaluated the proposed method on ORL and YALE databases with MATLAB 2020a. Moreover, the same experiments were conducted applying particle swarm optimization (PSO) for the feature selection approach. The implementation of Gabor wavelet feature extraction with a high number of training image samples has proved to be more effective than other methods in our study. The recognition rate when implementing the PSO methods on the ORL database is 85.42% while it is 92% with the three methods on the YALE database. However, the use of the PSO algorithm has increased the accuracy rate to 96.22% for the ORL database and 94.66% for the YALE database.