Cargando…
Optimum Feature Selection with Particle Swarm Optimization to Face Recognition System Using Gabor Wavelet Transform and Deep Learning
In this study, Gabor wavelet transform on the strength of deep learning which is a new approach for the symmetry face database is presented. A proposed face recognition system was developed to be used for different purposes. We used Gabor wavelet transform for feature extraction of symmetry face tra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969091/ https://www.ncbi.nlm.nih.gov/pubmed/33778071 http://dx.doi.org/10.1155/2021/6621540 |
_version_ | 1783666175000969216 |
---|---|
author | Ahmed, Sulayman Frikha, Mondher Hussein, Taha Darwassh Hanawy Rahebi, Javad |
author_facet | Ahmed, Sulayman Frikha, Mondher Hussein, Taha Darwassh Hanawy Rahebi, Javad |
author_sort | Ahmed, Sulayman |
collection | PubMed |
description | In this study, Gabor wavelet transform on the strength of deep learning which is a new approach for the symmetry face database is presented. A proposed face recognition system was developed to be used for different purposes. We used Gabor wavelet transform for feature extraction of symmetry face training data, and then, we used the deep learning method for recognition. We implemented and evaluated the proposed method on ORL and YALE databases with MATLAB 2020a. Moreover, the same experiments were conducted applying particle swarm optimization (PSO) for the feature selection approach. The implementation of Gabor wavelet feature extraction with a high number of training image samples has proved to be more effective than other methods in our study. The recognition rate when implementing the PSO methods on the ORL database is 85.42% while it is 92% with the three methods on the YALE database. However, the use of the PSO algorithm has increased the accuracy rate to 96.22% for the ORL database and 94.66% for the YALE database. |
format | Online Article Text |
id | pubmed-7969091 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-79690912021-03-26 Optimum Feature Selection with Particle Swarm Optimization to Face Recognition System Using Gabor Wavelet Transform and Deep Learning Ahmed, Sulayman Frikha, Mondher Hussein, Taha Darwassh Hanawy Rahebi, Javad Biomed Res Int Research Article In this study, Gabor wavelet transform on the strength of deep learning which is a new approach for the symmetry face database is presented. A proposed face recognition system was developed to be used for different purposes. We used Gabor wavelet transform for feature extraction of symmetry face training data, and then, we used the deep learning method for recognition. We implemented and evaluated the proposed method on ORL and YALE databases with MATLAB 2020a. Moreover, the same experiments were conducted applying particle swarm optimization (PSO) for the feature selection approach. The implementation of Gabor wavelet feature extraction with a high number of training image samples has proved to be more effective than other methods in our study. The recognition rate when implementing the PSO methods on the ORL database is 85.42% while it is 92% with the three methods on the YALE database. However, the use of the PSO algorithm has increased the accuracy rate to 96.22% for the ORL database and 94.66% for the YALE database. Hindawi 2021-03-10 /pmc/articles/PMC7969091/ /pubmed/33778071 http://dx.doi.org/10.1155/2021/6621540 Text en Copyright © 2021 Sulayman Ahmed et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ahmed, Sulayman Frikha, Mondher Hussein, Taha Darwassh Hanawy Rahebi, Javad Optimum Feature Selection with Particle Swarm Optimization to Face Recognition System Using Gabor Wavelet Transform and Deep Learning |
title | Optimum Feature Selection with Particle Swarm Optimization to Face Recognition System Using Gabor Wavelet Transform and Deep Learning |
title_full | Optimum Feature Selection with Particle Swarm Optimization to Face Recognition System Using Gabor Wavelet Transform and Deep Learning |
title_fullStr | Optimum Feature Selection with Particle Swarm Optimization to Face Recognition System Using Gabor Wavelet Transform and Deep Learning |
title_full_unstemmed | Optimum Feature Selection with Particle Swarm Optimization to Face Recognition System Using Gabor Wavelet Transform and Deep Learning |
title_short | Optimum Feature Selection with Particle Swarm Optimization to Face Recognition System Using Gabor Wavelet Transform and Deep Learning |
title_sort | optimum feature selection with particle swarm optimization to face recognition system using gabor wavelet transform and deep learning |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969091/ https://www.ncbi.nlm.nih.gov/pubmed/33778071 http://dx.doi.org/10.1155/2021/6621540 |
work_keys_str_mv | AT ahmedsulayman optimumfeatureselectionwithparticleswarmoptimizationtofacerecognitionsystemusinggaborwavelettransformanddeeplearning AT frikhamondher optimumfeatureselectionwithparticleswarmoptimizationtofacerecognitionsystemusinggaborwavelettransformanddeeplearning AT husseintahadarwasshhanawy optimumfeatureselectionwithparticleswarmoptimizationtofacerecognitionsystemusinggaborwavelettransformanddeeplearning AT rahebijavad optimumfeatureselectionwithparticleswarmoptimizationtofacerecognitionsystemusinggaborwavelettransformanddeeplearning |