Cargando…
Identification of Potential Diagnostic Gene Targets for Pediatric Sepsis Based on Bioinformatics and Machine Learning
Purpose: To develop a comprehensive differential expression gene profile as well as a prediction model based on the expression analysis of pediatric sepsis specimens. Methods: In this study, compared with control specimens, a total of 708 differentially expressed genes in pediatric sepsis (case–cont...
Autores principales: | Qiao, Ying, Zhang, Bo, Liu, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969637/ https://www.ncbi.nlm.nih.gov/pubmed/33748037 http://dx.doi.org/10.3389/fped.2021.576585 |
Ejemplares similares
-
Pediatric Severe Sepsis Prediction Using Machine Learning
por: Le, Sidney, et al.
Publicado: (2019) -
Identification of miRNAs in extracellular vesicles as potential diagnostic markers for pediatric epilepsy and drug-resistant epilepsy via bioinformatics analysis
por: Ruan, Yucai, et al.
Publicado: (2023) -
Refining empiric subgroups of pediatric sepsis using machine-learning techniques on observational data
por: Qin, Yidi, et al.
Publicado: (2023) -
Identification of Pediatric Bacterial Gastroenteritis From Blood Counts and Interviews Based on Machine Learning
por: Miyagi, Yoshifumi
Publicado: (2023) -
Machine Learning for Mortality Prediction in Pediatric Myocarditis
por: Chou, Fu-Sheng, et al.
Publicado: (2021)