Cargando…
A Stacking Ensemble Learning Framework for Genomic Prediction
Machine learning (ML) is perhaps the most useful tool for the interpretation of large genomic datasets. However, the performance of a single machine learning method in genomic selection (GS) is currently unsatisfactory. To improve the genomic predictions, we constructed a stacking ensemble learning...
Autores principales: | Liang, Mang, Chang, Tianpeng, An, Bingxing, Duan, Xinghai, Du, Lili, Wang, Xiaoqiao, Miao, Jian, Xu, Lingyang, Gao, Xue, Zhang, Lupei, Li, Junya, Gao, Huijiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969712/ https://www.ncbi.nlm.nih.gov/pubmed/33747037 http://dx.doi.org/10.3389/fgene.2021.600040 |
Ejemplares similares
-
PacBio Single-Molecule Long-Read Sequencing Provides New Light on the Complexity of Full-Length Transcripts in Cattle
por: Chang, Tianpeng, et al.
Publicado: (2021) -
Genome-Wide Association Study Based on Random Regression Model Reveals Candidate Genes Associated with Longitudinal Data in Chinese Simmental Beef Cattle
por: Du, Lili, et al.
Publicado: (2021) -
Genome-Wide Association Analysis of Growth Curve Parameters in Chinese Simmental Beef Cattle
por: Duan, Xinghai, et al.
Publicado: (2021) -
Transcriptome profiling analysis of muscle tissue reveals potential candidate genes affecting water holding capacity in Chinese Simmental beef cattle
por: Du, Lili, et al.
Publicado: (2021) -
A Fast and Powerful Empirical Bayes Method for Genome-Wide Association Studies
por: Chang, Tianpeng, et al.
Publicado: (2019)