Cargando…
Multi-Omics Data Fusion via a Joint Kernel Learning Model for Cancer Subtype Discovery and Essential Gene Identification
The multiple sources of cancer determine its multiple causes, and the same cancer can be composed of many different subtypes. Identification of cancer subtypes is a key part of personalized cancer treatment and provides an important reference for clinical diagnosis and treatment. Some studies have s...
Autores principales: | Feng, Jie, Jiang, Limin, Li, Shuhao, Tang, Jijun, Wen, Lan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969795/ https://www.ncbi.nlm.nih.gov/pubmed/33747053 http://dx.doi.org/10.3389/fgene.2021.647141 |
Ejemplares similares
-
Kernel Fusion Method for Detecting Cancer Subtypes via Selecting Relevant Expression Data
por: Li, Shuhao, et al.
Publicado: (2020) -
Multi-omics data integration for hepatocellular carcinoma subtyping with multi-kernel learning
por: Wang, Jiaying, et al.
Publicado: (2022) -
MDA-SKF: Similarity Kernel Fusion for Accurately Discovering miRNA-Disease Association
por: Jiang, Limin, et al.
Publicado: (2018) -
Multivariate Information Fusion With Fast Kernel Learning to Kernel Ridge Regression in Predicting LncRNA-Protein Interactions
por: Shen, Cong, et al.
Publicado: (2019) -
Discovering Cancer Subtypes via an Accurate Fusion Strategy on Multiple Profile Data
por: Jiang, Limin, et al.
Publicado: (2019)