Cargando…

Pol α-primase dependent nuclear localization of the mammalian CST complex

The human CST complex composed of CTC1, STN1, and TEN1 is critically involved in telomere maintenance and homeostasis. Specifically, CST terminates telomere extension by inhibiting telomerase access to the telomeric overhang and facilitates lagging strand fill in by recruiting DNA Polymerase alpha p...

Descripción completa

Detalles Bibliográficos
Autores principales: Kelich, Joseph M., Papaioannou, Harry, Skordalakes, Emmanuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969954/
https://www.ncbi.nlm.nih.gov/pubmed/33731801
http://dx.doi.org/10.1038/s42003-021-01845-4
Descripción
Sumario:The human CST complex composed of CTC1, STN1, and TEN1 is critically involved in telomere maintenance and homeostasis. Specifically, CST terminates telomere extension by inhibiting telomerase access to the telomeric overhang and facilitates lagging strand fill in by recruiting DNA Polymerase alpha primase (Pol α-primase) to the telomeric C-strand. Here we reveal that CST has a dynamic intracellular localization that is cell cycle dependent. We report an increase in nuclear CST several hours after the initiation of DNA replication, followed by exit from the nucleus prior to mitosis. We identify amino acids of CTC1 involved in Pol α-primase binding and nuclear localization. We conclude, the CST complex does not contain a nuclear localization signal (NLS) and suggest that its nuclear localization is reliant on Pol α-primase. Hypomorphic mutations affecting CST nuclear import are associated with telomere syndromes and cancer, emphasizing the important role of this process in health.