Cargando…
Assessment of a Spatiotemporal Deep Learning Approach for Soil Moisture Prediction and Filling the Gaps in Between Soil Moisture Observations
Soil moisture (SM) plays a significant role in determining the probability of flooding in a given area. Currently, SM is most commonly modeled using physically-based numerical hydrologic models. Modeling the natural processes that take place in the soil is difficult and requires assumptions. Besides...
Autores principales: | ElSaadani, Mohamed, Habib, Emad, Abdelhameed, Ahmed M., Bayoumi, Magdy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969976/ https://www.ncbi.nlm.nih.gov/pubmed/33748748 http://dx.doi.org/10.3389/frai.2021.636234 |
Ejemplares similares
-
Detection of protein, starch, oil, and moisture content of corn kernels using one-dimensional convolutional autoencoder and near-infrared spectroscopy
por: Cataltas, Ozcan, et al.
Publicado: (2023) -
Long-Term Spatiotemporal Variations in Soil Moisture in North East China Based on 1-km Resolution Downscaled Passive Microwave Soil Moisture Products
por: Meng, Xiangjin, et al.
Publicado: (2019) -
Observational evidence of wildfire-promoting soil moisture anomalies
por: O, Sungmin, et al.
Publicado: (2020) -
Using solar radiation data in soil moisture diagnostic equation for estimating root-zone soil moisture
por: Omotere, Olumide, et al.
Publicado: (2022) -
Machine Learning-Based Modeling of Spatio-Temporally Varying Responses of Rainfed Corn Yield to Climate, Soil, and Management in the U.S. Corn Belt
por: Xu, Tianfang, et al.
Publicado: (2021)