Cargando…
Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems
Various hypotheses of information representation in brain, referred to as neural codes, have been proposed to explain the information transmission between neurons. Neural coding plays an essential role in enabling the brain-inspired spiking neural networks (SNNs) to perform different tasks. To searc...
Autores principales: | Guo, Wenzhe, Fouda, Mohammed E., Eltawil, Ahmed M., Salama, Khaled Nabil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970006/ https://www.ncbi.nlm.nih.gov/pubmed/33746705 http://dx.doi.org/10.3389/fnins.2021.638474 |
Ejemplares similares
-
Efficient training of spiking neural networks with temporally-truncated local backpropagation through time
por: Guo, Wenzhe, et al.
Publicado: (2023) -
Unsupervised Adaptive Weight Pruning for Energy-Efficient Neuromorphic Systems
por: Guo, Wenzhe, et al.
Publicado: (2020) -
Robust Working Memory in an Asynchronously Spiking Neural Network Realized with Neuromorphic VLSI
por: Giulioni, Massimiliano, et al.
Publicado: (2012) -
Autonomous driving controllers with neuromorphic spiking neural networks
por: Halaly, Raz, et al.
Publicado: (2023) -
Optimizing the Energy Consumption of Spiking Neural Networks for Neuromorphic Applications
por: Sorbaro, Martino, et al.
Publicado: (2020)