Cargando…
A novel approach to teaching Hidden Markov Models to a diverse undergraduate population
Hidden Markov Models (HMMs) are an essential tool for Bioinformatic analysis, with extensive success at finding patterns (e.g. CRISPR arrays or genes of interest) in DNA or protein sequences. HMMs are conceptually intricate, and the algorithms that make use of them are complicated. Thus they present...
Autores principales: | Heller, Philip, Pogaru, Pratyusha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970139/ https://www.ncbi.nlm.nih.gov/pubmed/33748491 http://dx.doi.org/10.1016/j.heliyon.2021.e06437 |
Ejemplares similares
-
A Depression-Risk Mental Pattern Identified by Hidden Markov Model in Undergraduates
por: Jiang, Xiaowei, et al.
Publicado: (2022) -
A generic hidden Markov model for multiparent populations
por: Broman, Karl W
Publicado: (2021) -
Inference in Hidden Markov Models
por: Cappe, Olivier
Publicado: (2005) -
Hidden Markov Modeling with HMMTeacher
por: Fuentes-Beals, Camilo, et al.
Publicado: (2022) -
Constrained hidden Markov models for population-based haplotyping
por: Landwehr, Niels, et al.
Publicado: (2007)