Cargando…

ILC3s control splenic cDC homeostasis via lymphotoxin signaling

The spleen contains a myriad of conventional dendritic cell (cDC) subsets that protect against systemic pathogen dissemination by bridging antigen detection to the induction of adaptive immunity. How cDC subsets differentiate in the splenic environment is poorly understood. Here, we report that LTα(...

Descripción completa

Detalles Bibliográficos
Autores principales: Vanderkerken, Matthias, Baptista, Antonio P., De Giovanni, Marco, Fukuyama, Satoshi, Browaeys, Robin, Scott, Charlotte L., Norris, Paula S., Eberl, Gerard, Di Santo, James P., Vivier, Eric, Saeys, Yvan, Hammad, Hamida, Cyster, Jason G., Ware, Carl F., Tumanov, Alexei V., De Trez, Carl, Lambrecht, Bart N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970251/
https://www.ncbi.nlm.nih.gov/pubmed/33724364
http://dx.doi.org/10.1084/jem.20190835
_version_ 1783666398775476224
author Vanderkerken, Matthias
Baptista, Antonio P.
De Giovanni, Marco
Fukuyama, Satoshi
Browaeys, Robin
Scott, Charlotte L.
Norris, Paula S.
Eberl, Gerard
Di Santo, James P.
Vivier, Eric
Saeys, Yvan
Hammad, Hamida
Cyster, Jason G.
Ware, Carl F.
Tumanov, Alexei V.
De Trez, Carl
Lambrecht, Bart N.
author_facet Vanderkerken, Matthias
Baptista, Antonio P.
De Giovanni, Marco
Fukuyama, Satoshi
Browaeys, Robin
Scott, Charlotte L.
Norris, Paula S.
Eberl, Gerard
Di Santo, James P.
Vivier, Eric
Saeys, Yvan
Hammad, Hamida
Cyster, Jason G.
Ware, Carl F.
Tumanov, Alexei V.
De Trez, Carl
Lambrecht, Bart N.
author_sort Vanderkerken, Matthias
collection PubMed
description The spleen contains a myriad of conventional dendritic cell (cDC) subsets that protect against systemic pathogen dissemination by bridging antigen detection to the induction of adaptive immunity. How cDC subsets differentiate in the splenic environment is poorly understood. Here, we report that LTα(1)β(2)-expressing Rorgt(+) ILC3s, together with B cells, control the splenic cDC niche size and the terminal differentiation of Sirpα(+)CD4(+)Esam(+) cDC2s, independently of the microbiota and of bone marrow pre-cDC output. Whereas the size of the splenic cDC niche depended on lymphotoxin signaling only during a restricted time frame, the homeostasis of Sirpα(+)CD4(+)Esam(+) cDC2s required continuous lymphotoxin input. This latter property made Sirpα(+)CD4(+)Esam(+) cDC2s uniquely susceptible to pharmacological interventions with LTβR agonists and antagonists and to ILC reconstitution strategies. Together, our findings demonstrate that LTα(1)β(2)-expressing Rorgt(+) ILC3s drive splenic cDC differentiation and highlight the critical role of ILC3s as perpetual regulators of lymphoid tissue homeostasis.
format Online
Article
Text
id pubmed-7970251
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-79702512021-11-03 ILC3s control splenic cDC homeostasis via lymphotoxin signaling Vanderkerken, Matthias Baptista, Antonio P. De Giovanni, Marco Fukuyama, Satoshi Browaeys, Robin Scott, Charlotte L. Norris, Paula S. Eberl, Gerard Di Santo, James P. Vivier, Eric Saeys, Yvan Hammad, Hamida Cyster, Jason G. Ware, Carl F. Tumanov, Alexei V. De Trez, Carl Lambrecht, Bart N. J Exp Med Brief Definitive Report The spleen contains a myriad of conventional dendritic cell (cDC) subsets that protect against systemic pathogen dissemination by bridging antigen detection to the induction of adaptive immunity. How cDC subsets differentiate in the splenic environment is poorly understood. Here, we report that LTα(1)β(2)-expressing Rorgt(+) ILC3s, together with B cells, control the splenic cDC niche size and the terminal differentiation of Sirpα(+)CD4(+)Esam(+) cDC2s, independently of the microbiota and of bone marrow pre-cDC output. Whereas the size of the splenic cDC niche depended on lymphotoxin signaling only during a restricted time frame, the homeostasis of Sirpα(+)CD4(+)Esam(+) cDC2s required continuous lymphotoxin input. This latter property made Sirpα(+)CD4(+)Esam(+) cDC2s uniquely susceptible to pharmacological interventions with LTβR agonists and antagonists and to ILC reconstitution strategies. Together, our findings demonstrate that LTα(1)β(2)-expressing Rorgt(+) ILC3s drive splenic cDC differentiation and highlight the critical role of ILC3s as perpetual regulators of lymphoid tissue homeostasis. Rockefeller University Press 2021-03-16 /pmc/articles/PMC7970251/ /pubmed/33724364 http://dx.doi.org/10.1084/jem.20190835 Text en © 2021 Vanderkerken et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Brief Definitive Report
Vanderkerken, Matthias
Baptista, Antonio P.
De Giovanni, Marco
Fukuyama, Satoshi
Browaeys, Robin
Scott, Charlotte L.
Norris, Paula S.
Eberl, Gerard
Di Santo, James P.
Vivier, Eric
Saeys, Yvan
Hammad, Hamida
Cyster, Jason G.
Ware, Carl F.
Tumanov, Alexei V.
De Trez, Carl
Lambrecht, Bart N.
ILC3s control splenic cDC homeostasis via lymphotoxin signaling
title ILC3s control splenic cDC homeostasis via lymphotoxin signaling
title_full ILC3s control splenic cDC homeostasis via lymphotoxin signaling
title_fullStr ILC3s control splenic cDC homeostasis via lymphotoxin signaling
title_full_unstemmed ILC3s control splenic cDC homeostasis via lymphotoxin signaling
title_short ILC3s control splenic cDC homeostasis via lymphotoxin signaling
title_sort ilc3s control splenic cdc homeostasis via lymphotoxin signaling
topic Brief Definitive Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970251/
https://www.ncbi.nlm.nih.gov/pubmed/33724364
http://dx.doi.org/10.1084/jem.20190835
work_keys_str_mv AT vanderkerkenmatthias ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT baptistaantoniop ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT degiovannimarco ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT fukuyamasatoshi ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT browaeysrobin ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT scottcharlottel ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT norrispaulas ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT eberlgerard ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT disantojamesp ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT viviereric ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT saeysyvan ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT hammadhamida ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT cysterjasong ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT warecarlf ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT tumanovalexeiv ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT detrezcarl ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling
AT lambrechtbartn ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling