Cargando…
ILC3s control splenic cDC homeostasis via lymphotoxin signaling
The spleen contains a myriad of conventional dendritic cell (cDC) subsets that protect against systemic pathogen dissemination by bridging antigen detection to the induction of adaptive immunity. How cDC subsets differentiate in the splenic environment is poorly understood. Here, we report that LTα(...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970251/ https://www.ncbi.nlm.nih.gov/pubmed/33724364 http://dx.doi.org/10.1084/jem.20190835 |
_version_ | 1783666398775476224 |
---|---|
author | Vanderkerken, Matthias Baptista, Antonio P. De Giovanni, Marco Fukuyama, Satoshi Browaeys, Robin Scott, Charlotte L. Norris, Paula S. Eberl, Gerard Di Santo, James P. Vivier, Eric Saeys, Yvan Hammad, Hamida Cyster, Jason G. Ware, Carl F. Tumanov, Alexei V. De Trez, Carl Lambrecht, Bart N. |
author_facet | Vanderkerken, Matthias Baptista, Antonio P. De Giovanni, Marco Fukuyama, Satoshi Browaeys, Robin Scott, Charlotte L. Norris, Paula S. Eberl, Gerard Di Santo, James P. Vivier, Eric Saeys, Yvan Hammad, Hamida Cyster, Jason G. Ware, Carl F. Tumanov, Alexei V. De Trez, Carl Lambrecht, Bart N. |
author_sort | Vanderkerken, Matthias |
collection | PubMed |
description | The spleen contains a myriad of conventional dendritic cell (cDC) subsets that protect against systemic pathogen dissemination by bridging antigen detection to the induction of adaptive immunity. How cDC subsets differentiate in the splenic environment is poorly understood. Here, we report that LTα(1)β(2)-expressing Rorgt(+) ILC3s, together with B cells, control the splenic cDC niche size and the terminal differentiation of Sirpα(+)CD4(+)Esam(+) cDC2s, independently of the microbiota and of bone marrow pre-cDC output. Whereas the size of the splenic cDC niche depended on lymphotoxin signaling only during a restricted time frame, the homeostasis of Sirpα(+)CD4(+)Esam(+) cDC2s required continuous lymphotoxin input. This latter property made Sirpα(+)CD4(+)Esam(+) cDC2s uniquely susceptible to pharmacological interventions with LTβR agonists and antagonists and to ILC reconstitution strategies. Together, our findings demonstrate that LTα(1)β(2)-expressing Rorgt(+) ILC3s drive splenic cDC differentiation and highlight the critical role of ILC3s as perpetual regulators of lymphoid tissue homeostasis. |
format | Online Article Text |
id | pubmed-7970251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-79702512021-11-03 ILC3s control splenic cDC homeostasis via lymphotoxin signaling Vanderkerken, Matthias Baptista, Antonio P. De Giovanni, Marco Fukuyama, Satoshi Browaeys, Robin Scott, Charlotte L. Norris, Paula S. Eberl, Gerard Di Santo, James P. Vivier, Eric Saeys, Yvan Hammad, Hamida Cyster, Jason G. Ware, Carl F. Tumanov, Alexei V. De Trez, Carl Lambrecht, Bart N. J Exp Med Brief Definitive Report The spleen contains a myriad of conventional dendritic cell (cDC) subsets that protect against systemic pathogen dissemination by bridging antigen detection to the induction of adaptive immunity. How cDC subsets differentiate in the splenic environment is poorly understood. Here, we report that LTα(1)β(2)-expressing Rorgt(+) ILC3s, together with B cells, control the splenic cDC niche size and the terminal differentiation of Sirpα(+)CD4(+)Esam(+) cDC2s, independently of the microbiota and of bone marrow pre-cDC output. Whereas the size of the splenic cDC niche depended on lymphotoxin signaling only during a restricted time frame, the homeostasis of Sirpα(+)CD4(+)Esam(+) cDC2s required continuous lymphotoxin input. This latter property made Sirpα(+)CD4(+)Esam(+) cDC2s uniquely susceptible to pharmacological interventions with LTβR agonists and antagonists and to ILC reconstitution strategies. Together, our findings demonstrate that LTα(1)β(2)-expressing Rorgt(+) ILC3s drive splenic cDC differentiation and highlight the critical role of ILC3s as perpetual regulators of lymphoid tissue homeostasis. Rockefeller University Press 2021-03-16 /pmc/articles/PMC7970251/ /pubmed/33724364 http://dx.doi.org/10.1084/jem.20190835 Text en © 2021 Vanderkerken et al. http://www.rupress.org/terms/https://creativecommons.org/licenses/by-nc-sa/4.0/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Brief Definitive Report Vanderkerken, Matthias Baptista, Antonio P. De Giovanni, Marco Fukuyama, Satoshi Browaeys, Robin Scott, Charlotte L. Norris, Paula S. Eberl, Gerard Di Santo, James P. Vivier, Eric Saeys, Yvan Hammad, Hamida Cyster, Jason G. Ware, Carl F. Tumanov, Alexei V. De Trez, Carl Lambrecht, Bart N. ILC3s control splenic cDC homeostasis via lymphotoxin signaling |
title | ILC3s control splenic cDC homeostasis via lymphotoxin signaling |
title_full | ILC3s control splenic cDC homeostasis via lymphotoxin signaling |
title_fullStr | ILC3s control splenic cDC homeostasis via lymphotoxin signaling |
title_full_unstemmed | ILC3s control splenic cDC homeostasis via lymphotoxin signaling |
title_short | ILC3s control splenic cDC homeostasis via lymphotoxin signaling |
title_sort | ilc3s control splenic cdc homeostasis via lymphotoxin signaling |
topic | Brief Definitive Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970251/ https://www.ncbi.nlm.nih.gov/pubmed/33724364 http://dx.doi.org/10.1084/jem.20190835 |
work_keys_str_mv | AT vanderkerkenmatthias ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT baptistaantoniop ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT degiovannimarco ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT fukuyamasatoshi ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT browaeysrobin ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT scottcharlottel ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT norrispaulas ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT eberlgerard ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT disantojamesp ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT viviereric ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT saeysyvan ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT hammadhamida ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT cysterjasong ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT warecarlf ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT tumanovalexeiv ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT detrezcarl ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling AT lambrechtbartn ilc3scontrolspleniccdchomeostasisvialymphotoxinsignaling |